
Schedule: Timing Topic
20 minutes Lecture
30 minutes Practice
20 minutes Total

Gaudi Framework Tutorial, 2001

6
Writing Physics Tools

Gaudi Tutorial: Introduction 1-2

6-2 Gaudi Framework Tutorial, 2001

Objectives

After completing this lesson, you should
be able to:
• Define and implement a tool
• Retrieve and use tools in an algorithm
• Use private instances of tools
• Extend existing tools

Lesson Aims
Different physics analysis often perform the same operation on similar objects. Typical examples
are making a vertex from a list of particles, swimming the parameter of a particle to a specified
position, associating a reconstructed particle with Monte Carlo generator particles.
Tools allow to share this code between separate algorithms. Instances of tools are also shared at
run-time minimizing the creation of new objects. Algorithms request tools on a per need basis to
the Tool Service that provides to their management.
Different ways of performing an operation can be implemented by different type of tools with the
same interface. It will be shown how to write a tool interface.
Tools properties can be controlled via job options, when a tool is required to have a special
configuration a private instance of the tool can be used.
When different type of tools with the same interface exist, the choice of the concrete tool can be
done at run-time provided the Algorithm interacts with the tool via this interface.

Gaudi Tutorial: Introduction 1-3

6-3 Gaudi Framework Tutorial, 2001

Caveat

Things that will be used in the tutorial and
are assumed to be know:
• How to write a simple algorithm
• How to print
• How to use Job Options
• How to use Particle Properties and

Particle Property Service

Caveat:
The aim of the tutorial is to learn how to write and use tools.
Some of the topics covered in the “Gaudi Basics Tutorial” are assumed to be known and are
consequently used.

Gaudi Tutorial: Introduction 1-4

6-4 Gaudi Framework Tutorial, 2001

How to write concrete tools:
header file

A concrete tool will inherit from the
AlgTool base class:

– no initialize(), finalize()
– serviceLocator()
– msgSvc()
– has properties
– the IAlgTool interface is implemented

Configured at creation

Configured via job options

Retrieve necessary services

How to write concrete tools: header file
By inheriting from the AlgTool Base class, concrete tool are managed by the ToolSvc. The base
class in fact, implements the IAlgTool interface that is the protocol used by the ToolSvc to interact
with tools.
Tools can be configured in the constructor or via the job options. Tools could need to use
services, for this reason the AlgTool base class provides a serviceLocator() method to help in
retrieving the necessary services.
Access to the Message Service is also provided.

Gaudi Tutorial: Introduction 1-5

6-5 Gaudi Framework Tutorial, 2001

How to write concrete tools:
implementation file

Instantiate a static factory
– As for Algorithms but ToolFactory

Declare in constructor specific properties
and get services necessary to the
implementation

– As in constructor and initialize of Algorithms

Implement necessary functionality
– Additional methods specific to the tool

How to write concrete tools: implementation file
Concrete tools, as algorithms are instantiate using a factory method. This allows new tools to be
introduced at any time without having to include all their headers file in the ToolSvc.
Anything that need to be held through the lifetime of a tool has to be set in the constructor: this
include properties as well as pointers to necessary services. If reset mechanisms are
implemented their management has also to be taken care of.
The necessary functionality of a tool is implemented in additional methods, this methods can be
executed as often (or rarely) as deemed necessary by the algorithm using the tool.

Gaudi Tutorial: Introduction 1-6

6-6 Gaudi Framework Tutorial, 2001

Tools Specific Interfaces

Many tools can perform a similar
operation in different ways

– Useful to define an additional
interface based on tool functionality

– This additional interface has to inherit
from the IAlgTool interface
Rememeber: The implementation of the IAlgTool interface is
done by the AlgTool base class, don’t need to worry about it

Tools Specific Interfaces
Many tools can perform similar operation in different ways but with the same well defined protocol.
When useful, interfaces based on tool functionality can be defined. For example fitting a vertex
from a list of particles can be done in more than one way but it will always require a list of particles
and return a vertex.
In order for a tool to interact with the ToolSvc via this additional interface, the interface itself has to
inherit from IAlgTool. The implementation of the IAlgTool interface is done in the AlgTool base
class and does not have to be implemented in concrete tools.

Gaudi Tutorial: Introduction 1-7

6-7 Gaudi Framework Tutorial, 2001

Tools interfaces in practice

class IMCUtilityTool : virtual public IAlgTool {

public:

}

#include “GaudiKernel/IAlgTool.h”

static const InterfaceID IID_IMCUtilityTool(440, 1, 0)

Necessary for Inheritance

Unique interface ID

/// Retrieve interface ID

static const InterfaceID& interfaceID() {

return IID_IMCUtilityTool;

}

Tools interfaces In practice
A tool additional interface has to conform to the rules of a Gaudi interface.
It will have only pure virtual methods, with the exception of the static method InterfaceID. This
method returns a unique interface identifier to be used by the query interface mechanism.
See Gaudi User Guide for more details.

Gaudi Tutorial: Introduction 1-8

6-8 Gaudi Framework Tutorial, 2001

Requesting and using tools

•Algorithms (or Services) request a
specific tool to the ToolSvc
•All tool management is done by the
ToolSvc

– Creates tools on first request
– Holds all instances and dispatches

requested tool
• Algorithm can keep a pointer to a tool

and use it when necessary

Requesting and using tools
Algorithms, services or tools themselves request specific instances of tools to the ToolSvc on a
per need basis.
The ToolSvc creates them upon the first request, holds all the existing instances and dispatch the
requested tool to the algorithms that require it.

Gaudi Tutorial: Introduction 1-9

6-9 Gaudi Framework Tutorial, 2001

How to retrieve a tool via the
ToolSvc

In order to retrieve a tool it is necessary to
specify its concrete class and a pointer
return type

MyTool* pMyTool = 0;

retrieveTool(“MyToolClass”, pMyTool)

Gaudi Tutorial: Introduction 1-10

6-10 Gaudi Framework Tutorial, 2001

Hands on: MCUtilityTool
Write a Monte Carlo utility tool that:
• prints a decay tree given a MCParticle

– Use what you have done in DecayTreeAlgorithm

• returns true/false if the products of a
MCParticle matches a defined list of
daughters

– Loop over decay products and verify they have the
same particleID as those of the list

Retrieve and use the tool in an Algorithm
– Add only relevant parts to skeleton AnalysisAlgorithm

Hands on
In the following exercise we will write a simple Monte Carlo utility tool using some of the things
learned in the Gaudi Basics Tutorial.
Printing a MonteCarlo tree given the parent particle is in fact something that many algorithms
could want to do: we will transfer that functionality in a tool. At the same time many algorithms
could want to check if a specified decay is in the event. To keep things simple we will restrict
ourselves to a one step decay of n particles.
Eventually we will use the tool in an Algortihm.
We will need to

- Define the interface methods and write the interface
IMCUtility.h

- Write the tool itself
MCUtility.h, MCUtility.cpp

we will make use of Particle Properties
- Write the algorithm that retrieves and uses the tool
AnalysisAlgorithm.h, AnalysisAlgorithm.cpp

Skeleton files where only the relevant parts to the tool tutorial are missing have been prepared for
you.

Gaudi Tutorial: Introduction 1-11

6-11 Gaudi Framework Tutorial, 2001

Hands on: IMCUtilityTool
protocol

virtual bool matchDecayTree(const MCParticle* mother,

std::vector<long> daughtersID)

= 0;

virtual void printDecayTree(long depth,

const std::string& prefix,

const MCParticle* mother) = 0;

Pure virtual methods

IMCUtilityTool
Start by having a IMCUtilityTool interface with two methods

printDecayTree
matchDecayTree

A skeleton file is provided in the directory Analysis.
The location of the file follows the packaging convention for public include files.

Gaudi Tutorial: Introduction 1-12

6-12 Gaudi Framework Tutorial, 2001

Hands on: MCUtilityTool.h

Declare the interface methods

Remember to include the data members

void printDecayTree(long depth,

const std::string& prefix,

const MCParticle* mother);

bool matchDecayTree(const MCPartticle* mother,

sdt::vector<std::long> daugthersID);

IParticlePropertySvc* m_ppSvc;

Long m_depth;

Gaudi Tutorial: Introduction 1-13

6-13 Gaudi Framework Tutorial, 2001

Hands on: MCUtilityTool.cpp

To handle errors in constructor

Remember to include the necessary
headers

#include "GaudiKernel/GaudiException.h"

#include "GaudiKernel/IParticlePropertySvc.h"

#include "GaudiKernel/ParticleProperty.h"

#include "CLHEP/Units/PhysicalConstants.h"

#include "LHCbEvent/MCParticle.h"

Note:
Tools can be configured only in the constructor. This implies that Status Codes cannot be
returned in case of problems during the configuration, but you must throw an exception. The
ToolSvc takes care of handling these exceptions and to inform the algorithm requesting the tool of
the failure.
GaudiExceptions allow to provide additional information so that appropriate error messages can
be printed by the ToolSvc.

Gaudi Tutorial: Introduction 1-14

6-14 Gaudi Framework Tutorial, 2001

Constructor

• Retrieve the Particle Property Service

•In case of problems throw a GaudiException

•Declare Properties

m_ppSvc = 0;

StatusCode sc=serviceLocator()->service("ParticlePropertySvc",

m_ppSvc)

throw GaudiException("ParticlePropertySvc not found",

"MCUtilityToolException",

StatusCode::FAILURE);

declareProperty("PrintDepth", m_depth = 999);

Gaudi Tutorial: Introduction 1-15

6-15 Gaudi Framework Tutorial, 2001

queryInterface
StatusCode MCUtilityTool::queryInterface(const IID& riid,

void** ppvInterface){

if (IID_IMCUtilityTool == riid) {

ppvInterface = (IMCUtilityTool)this;

}

else {

// Interface is not directly available:

// try the AlgTool base class

return AlgTool::queryInterface(riid, ppvInterface);

}

addRef();

return StatusCode::SUCCESS;

}

Note:
A tool with an additional interface has to implement the queryInterface method that returns the
pointer to the requested interface out of those implemented. This can be done in a base class.

Gaudi Tutorial: Introduction 1-16

6-16 Gaudi Framework Tutorial, 2001

printDecayTree
(identical to DecayTreeAlgorithm)

void MCUtilityTool::printDecayTree(long depth,
const std::string& prefix,
const MCParticle* mother) {

MsgStream log(msgSvc(), name());
const SmartRefVector<MCVertex>& decays = mother->decayMCVertices();
ParticleProperty* p = m_ppSvc->find(mother->particleID().id());
log << MSG::INFO << depth << prefix.substr(0, prefix.length()-1)

<< "+--->" << p->particle() << endreq;

if (depth < m_depth) {
SmartRefVector<MCVertex>::const_iterator iv;
for (iv = decays.begin(); iv != decays.end(); iv++) {

const SmartRefVector<MCParticle>& daughters = (*iv)->daughterMCParticles();
SmartRefVector<MCParticle>::const_iterator idau;
for (idau = daughters.begin(); idau != daughters.end(); idau++) {

printDecayTree(depth+1, prefix+" |", *idau);
}

}
}

}

Gaudi Tutorial: Introduction 1-17

6-17 Gaudi Framework Tutorial, 2001

matchDecayTree

If you don’t have time just return a false

Gaudi Tutorial: Introduction 1-18

6-18 Gaudi Framework Tutorial, 2001

Using IToolSvc to retrieve a tool
...AnalysisAlgorithm.h

std::string m_toolName; ///< Tool name

IMCUtilityTool* m_pUtilTool; ///< Reference to tool

...AnalysisAlgorithm::initialize()...

IToolSvc* toolsvc = 0;

StatusCode sc = service("ToolSvc", toolsvc);

if (sc.isFailure()) { // You have to handle the error!
}

sc = toolsvc->retrieveTool(m_toolName, m_pUtilTool);

if (sc.isFailure()) { // You have to handle the error!
}

Gaudi Tutorial: Introduction 1-19

6-19 Gaudi Framework Tutorial, 2001

Using a tool
...AnalysisAlgorithm::execute()

// inside loop over MCParticle

if ((*ipart)->particleID().id() == m_partID) {

log << MSG::INFO << "Found Particle of type " << m_partName

<< endreq;

// Now use tool to print tree and check if requested tree

m_pUtilTool->printDecayTree(0, " |", *ipart);

bool result = m_pUtilTool->matchDecayTree(*ipart,

m_daugID);

if (result) { // Print a message

} else { // Print a different message

}

Gaudi Tutorial: Introduction 1-20

6-20 Gaudi Framework Tutorial, 2001

ParentName.ToolName

Configuring a tool

A concrete tool can be configured using
the jobOptions
Follow usual convention:

IdentifyingNameOfTool.NameOfProperty

Through the base class all tools have the
OutputLevel property

• The default value is that of the parent

ToolSvc.MCUtilityTool.PrinDepth = 0;

Gaudi Tutorial: Introduction 1-21

6-21 Gaudi Framework Tutorial, 2001

Public and Private tools

• A tool instance can be shared by many
algorithms: it is public and belong to the
ToolSvc
• Algorithm can have private instances of
tools, that can be configured “ad-hoc”
• To retrieve a private instance the parent
has to pass itself to the retrieve method

toolSvc->retrieveTool(“MyTool”,pMyTool, this)

Public and Private Tools
A tool instance can be shared by different algorithms and services. Its parent is the ToolSvc.
It is possible to re-configure such instances but care has to be taken to ensure no undesired side
effects in the algorithms that use it.
In addition an algorithm could need to use two differently configured instances of the same tool
Private instances of tools address these points. Although they are managed by the ToolSvc, they
are seen as belonging to the algorithm requesting them. The algorithm has to pass itself in order
to notify the ToolSvc that the tool instance has to be private.
Only algorithms and services can be tools’ parents.

Gaudi Tutorial: Introduction 1-22

6-22 Gaudi Framework Tutorial, 2001

Hands on: Private Tools

Use two instances of the same tool in the
AnalysisAlgorithm
• A public instance with default

configuration
• A private instance with different printing

depth

Note:
The tool is not modified, only the algorithm using it.

Gaudi Tutorial: Introduction 1-23

6-23 Gaudi Framework Tutorial, 2001

Using a private and a public tool
...AnalysisAlgorithm.h

std::string m_myToolName; ///< Tool name

IMCUtilityTool* m_pMyUtilTool; ///< Reference to tool

...AnalysisAlgorithm::initialize()...

sc = toolsvc->retrieveTool(m_myToolName, m_pMyUtilTool,

this);

...AnalysisAlgorithm::execute()...

m_pMyUtilTool->printDecayTree(0, " |", *ipart);

bool result = m_pMyUtilTool->matchDecayTree(*ipart,

m_daugID);

if (!result) {

m_pUtilTool->printDecayTree(0, " |", *ipart);

}

Gaudi Tutorial: Introduction 1-24

6-24 Gaudi Framework Tutorial, 2001

Extending existing tools

Different tools can implement the same
functionality
If the algorithms interacts with them only
through the interface they are
interchangeable
The choice can be done via the job
options at run time

Extending existing tools
The same operation can be performed in a different way than that of a tool you have available.
For example you would like to print different information when you print a decay tree. You can
extend the existing tool or implement the tool interface in a new tool. As long as the algorithms
using this category of tools interact with them only through their interface they are
interchangeable. In fact the choice is done changing the string specifying the tool type in the
retrieveTool method. If this string is a property of the algorithms the concrete tool used can be
chosen at run-time via the job options, as in the tutorial example.
When knowing a priori that there will be concrete tools with a common functional interface (like
vertexers, associators, etc.) it is worth to ask if they will have common properties or methods (like
the queryInterface for example) and implement them in a base class.

Gaudi Tutorial: Introduction 1-25

6-25 Gaudi Framework Tutorial, 2001

Hand on: A different tool
implementation

Write a NewMCUtilityTool that prints the
tree with different type of information for
the MCParticle
• Inherit from MCUtilityTool
• Override printDecayTree method
• Change name of one of the tools used

by AnalysisAlgorithm of previous
exercise: only in job options

Gaudi Tutorial: Introduction 1-26

6-26 Gaudi Framework Tutorial, 2001

Hands on: NewMCUtilityTool

...NewMCUtility.h

#include "MCUtilityTool.h"

class NewMCUtilityTool : public MCUtilityTool {

...

void printDecayTree(long depth, const std::string& prefix,

const MCParticle* mother);

...NewMCUtility.cpp

void NewMCUtilityTool::printDecayTree(long depth,

const std::string& prefix,

const MCParticle* mother) {

// Change the method as you like

Gaudi Tutorial: Introduction 1-27

6-27 Gaudi Framework Tutorial, 2001

Hands on: Use different tools

Once the tool exist you only need to load
the modified job options.
An example NewMCUtility.opts is
provided

