
Schedule: Timing Topic
20 minutes Lecture

30 minutes Practice

50 minutes Total

Gaudi Framework Tutorial, 2001

7

Algorithm Tools: what they
are and how to use them

Gaudi Tutorial: Introduction 7-2

7-2 Gaudi Framework Tutorial, 2001

Objectives

After completing this lesson you should
be able to:

• Understand the difference between
tools and algorithms

• Retrieve and use tools in an algorithm

• Use private instances of tools

Goals

The first goal of this lesson in Algorithm tools is to introduce this new concept. Understanding the
differences between with other components of the framework (Services, Algorithms) is important for
making consistent designs across the experiment.

The second objective of the lesson is to enable you to use tools, understanding the difference between
public and private instances of tools.



Gaudi Tutorial: Introduction 7-3

7-3 Gaudi Framework Tutorial, 2001

Caveat

Things that will be used in the exercises
and are assumed to be know:

• How to write a simple algorithm
accessing MCParticle & MCVertex

• How to use the Message Service

• How to use Job Options

… essentially what you learned yesterday

Caveat:

The aim of this part of the tutorial is to learn how to use and write tools.

Some of the topics covered in the “Gaudi Basics Tutorial” are assumed to be known and are
consequently used.

Gaudi Tutorial: Introduction 7-4

7-4 Gaudi Framework Tutorial, 2001

Why Algorithm Tools?

Sometimes in an Algorithm it is necessary
to execute the same operation more than
once per event, only for some events, on
specific non identifiable data objects,
producing new objects that will be put in
the Event Store later

� Needed to introduce a new concept

The need for Algorithm Tools

When implementing an Algorithm, very often it is necessary to perform some operations or complex
processing for each object in a list (e. tracks in the track collection). Therefore, the concept of sub-
algorithm is not adequate for that purpose. In this kind of operations is more efficient to pass the data
as arguments instead of registering and retrieving from the transient store. In addition, it can be that
the same kind of operation can be re-used in other algorithms.



Gaudi Tutorial: Introduction 7-5

7-5 Gaudi Framework Tutorial, 2001

Algorithm Tools

The concept of Algorithms Tools, being a
sort of simple algorithms callable many
times and with arguments, was introduced
in Gaudi

• Examples

– Vertexing

– Track transport

– Association to truth

– Filtering of particles based on a pID CL

Designing for Re-use

Algorithm Tools are useful small algorithms that can be packages in a way that will be easy to re-use
them in other Algorithms. They are callable many times during the execution of an event and the user
can pass arguments.

Examples:

• Vertexing (to produce one or many vertexes from a list of tracks or particle candidates)

• Track transport (to obtain the track parameters on other points of the detector)

• Association to truth (to obtain the Monte Calo information corresponding to a reconstructed
object)

• Selection from a container of objects (to reduce the a list ob objects according to some selection
criteria)

Gaudi Tutorial: Introduction 7-6

7-6 Gaudi Framework Tutorial, 2001

Requirements
� An Algorithm requires a Tool on a per need base

� The ToolSvc checks if the requested type of Tool is available and
returns an instance of the requested type after configuring it

� An Algorithm can have a private instance of a Tool that can be
configured according to its need via JobOptions

� An Algorithm can use a Tool “as-it-is”, in this case the ToolSvc will
provide a “common” Tool (shared-Tool)

� An Algorithm should be able to use a Tool without worrying about the
implementation

� The ToolSvc keeps track of the Tools instantiated and if a tool exists it
does not re-create it

� An Algorithm can tell the ToolSvc if it will not need a tool anymore

� The ToolSvc will decide which tools instances can be deleted (always
done at finalization of the Service)

� Not only Algorithms would want to use Tools ( also Services … )



Gaudi Tutorial: Introduction 7-7

7-7 Gaudi Framework Tutorial, 2001

ToolSvc
The ToolSvc is the service that manages
Algorithm Tools (private or shared)
• Algorithms ask the ToolSvc for a given Tool by

name, it can keep a pointer to a tool and use it
when necessary

• Manages the life-cycle of Tools creating them
on a first request basis

• Keeps track of existing Tools, holding all
instances and dispatching them as requested

Tools can be configured using the
JobOptions as Algorithms or Services

The ToolSvc Service

This service is managing Algorithm Tools. It is the service in charge of tools in their life-cycle, it
creates them on first request, configures them and destroys them at the finalize phase of the job.

An Algorithm requests the ToolSvc to obtain a reference to a Tool by its name. Tools can be private
or shared. The idea is that if a Tool requires a fair amount of resources (memory, cpu time for
configuration) it does make sense to share the Tool among the various Algorithms that may require
this functionality. The problem with a shared tool is that is can not keep a state between invocations
since it is not guaranteed that other Algorithms may have used it meanwhile.

Gaudi Tutorial: Introduction 7-8

7-8 Gaudi Framework Tutorial, 2001

Design

IToolFactory

IAlgTool IProperty

ISubTool

Concrete
Algorithm

ToolSvc

IService IToolSvc

ToolFactory
<T>

Concrete
Tool1

AlgTool

Concrete
Tool2

SubTool

Design

The Design follows closely that of Algorithms. We have a base class (AlgTool) from which all the
Tools inherits from. This base class ensures that the Tool is manageable and configurable from the
TooSvc service and JobOptions service. Concrete Tools will have their own interface specific to the
tool or class of tools. Of course, specializations can always be possible by inheritance of concrete
tools.

The ToolSvc uses the factory pattern to instantiate concrete tools without known about them using the
generic abstract interface IToolFactory which is implemented by the template class ToolFactory. The
service keeps the list of AlgTools existing in the program.



Gaudi Tutorial: Introduction 7-9

7-9 Gaudi Framework Tutorial, 2001

In order to retrieve a tool it is necessary to
specify its concrete class and a pointer return
type

How to retrieve a tool via the
ToolSvc

IMyTool* pMyTool = 0;

retrieveTool(“MyToolClass”, pMyTool)

Note that the ToolSvc interacts with the tools interfaces

ToolSvc

IToolSvc

IToolSvc

• retrieveTool(type, tool,
createIf)

• retrieveTool(type, name, tool,
parent, createIf)

Gaudi Tutorial: Introduction 7-10

7-10 Gaudi Framework Tutorial, 2001

ParentName.ToolName

Configuring a tool

A concrete tool can be configured using
the jobOptions

Follow usual convention:
IdentifyingNameOfTool.NameOfProperty

Through the base class all tools have the
OutputLevel property

• The default value is that of the parent

ToolSvc.MCUtilityTool.PrintDepth = 0;



Gaudi Tutorial: Introduction 7-11

7-11 Gaudi Framework Tutorial, 2001

Hands on: Use MCUtilityTool

Write a simple algorithm that retrieves and
uses the MCUtilityTool to print a decay
tree given a MCParticle

– Take the DecayTreeAlgorithm and use it as a starting
point to make an AnalysisAlgorithm

– Request the tool to the ToolSvc using the tool interface
(will talk more about Tools interfaces later)

– Replace the printDecay method of the algorithm by
using that of the tool

– Use the matchDecayTree method to check for a 1-step
decay (ex. J/ψ �µ+µ−)

You can find the IMCUtilityTool documentation at:
http://lhcbsoft.web.cern.ch/LHCbSoft/Phys/DaVinci/v2r0/doc/html/
class_i_m_c_utility_tool.html

Hands on

In the following exercise we will use a simple Monte Carlo utility tool.

Printing a MonteCarlo tree given the parent particle is in fact something that many algorithms
could want to do: this functionality could be in a tool. At the same time many algorithms could
want to check if a specified decay is in the event.

Gaudi Tutorial: Introduction 7-12

7-12 Gaudi Framework Tutorial, 2001

...AnalysisAlgorithm.h

class IMCUtilityTool*; ///< Forward declaration

std::vector<std::string> m_daugName; ///< Name of daughters found

std::vector<long> m_daugID; ///< GeantID of daughters

std::string m_toolType; ///< Tool type

IMCUtilityTool* m_pUtilTool; ///< Reference to tool

...AnalysisAlgorithm::initialize()...

sc = toolSvc()->retrieveTool( m_toolType, m_pUtilTool );

if ( sc.isFailure() ) {

// You have to handle the error!
}

Hands on: Using IToolSvc to
retrieve a tool

Tool Concrete class

The interface



Gaudi Tutorial: Introduction 7-13

7-13 Gaudi Framework Tutorial, 2001

Hands on: Using a tool
...AnalysisAlgorithm::execute()

// inside loop over MCParticle

if ( (*ipart)->particleID().id() == m_partID ) {

log << MSG::INFO << "Found Particle of type " << m_partName

<< endreq;

// Now use tool to print tree and check if requested tree

m_pUtilTool->printDecayTree( 0, " |", *ipart );

bool result = m_pUtilTool->matchDecayTree( *ipart,

m_daugID );

if ( result ) { // Print a message

} else { // Print a different message

}

Don’t forget to include DaVinciTools/IMCUtilityTool.h

and GaudKernel/IToolSvc.h

Gaudi Tutorial: Introduction 7-14

7-14 Gaudi Framework Tutorial, 2001

• A tool instance can be shared by many
algorithms: it is public and belong to the
ToolSvc

• Algorithm can have private instances of
tools, that can be configured “ad-hoc”

• To retrieve a private instance the parent
has to pass itself to the retrieve method

toolSvc()->retrieveTool(“MyTool”,pMyTool, this)

Public and Private tools

Public and Private Tools

A tool instance can be shared by different algorithms and services. Its parent is the ToolSvc.

It is possible to re-configure such instances but care has to be taken to ensure no undesired
side effects in the algorithms that use it.

In addition an algorithm could need to use two differently configured instances of the same tool

Private instances of tools address these points. Although they are managed by the ToolSvc,
they are seen as belonging to the algorithm requesting them. The algorithm has to pass itself
in order to notify the ToolSvc that the tool instance has to be private.



Gaudi Tutorial: Introduction 7-15

7-15 Gaudi Framework Tutorial, 2001

Hands on: Private Tools

Use two instances of the same tool type in
the AnalysisAlgorithm

• A public instance with default
configuration

– When the specified decay tree is not found

• A private instance with different printing
depth

– When the specified decay tree is found

Note:

The tool is not modified, only its configuration via the job Options.

Gaudi Tutorial: Introduction 7-16

7-16 Gaudi Framework Tutorial, 2001

...AnalysisAlgorithm.h

std::string m_myToolType; ///< Tool type

IMCUtilityTool* m_pMyUtilTool; ///< Reference to tool

...AnalysisAlgorithm::initialize()...

sc = toolSvc()->retrieveTool( m_myToolType, m_pMyUtilTool,

this );

...AnalysisAlgorithm::execute()...

m_pMyUtilTool->printDecayTree( 0, " |", *ipart );

bool result = m_pMyUtilTool->matchDecayTree( *ipart,

m_daugID );

if ( result ) { … } else {

m_pUtilTool->printDecayTree( 0, " |", *ipart );

}

Hands on: Using a private and a
public instance of a tool


