
Schedule: Timing Topic
20 minutes Lecture

30 minutes Practice

20 minutes Total

Gaudi Framework Tutorial, 2001

8

Writing Tools:
advanced

Gaudi Tutorial: Introduction 8-2

8-2 Gaudi Framework Tutorial, 2001

Objectives

After completing this lesson, you should
be able to:

• Understand tools interfaces

• Define and implement a tool

Lesson Aims

Different ways of performing an operation can be implemented by different type of tools with
the same interface. Tools’ interfaces will be described.

The second goal of this lesson is to learn the necessary steps to implement a tool.

Gaudi Tutorial: Introduction 8-3

8-3 Gaudi Framework Tutorial, 2001

Algorithm Tools Types

Different tools can implement the same
functionality

Since the algorithms interacts with them
only through the interface they are
interchangeable

The choice can be done via the job
options at run time

This offers a way to evolve and improve
Tools

Tools classification

The idea is to classify tools for their functionality and try to define interfaces that are general
enough to be applicable to a number of them. In this way we can have different
implementation ranging from very simple ones to a more sophisticated ones.

Since algorithms using this category of tools interact with them only through their interface they
are interchangeable. In fact the choice is done changing the string specifying the tool type in
the retrieveTool method. If this string is a property of the algorithms the concrete tool used can
be chosen at run-time via the job options, as in the tutorial example.

When knowing a priori that there will be concrete tools with a common functional interface (like
vertexers, associators, etc.) it is worth to ask if they will have common properties or methods
and implement them in a base class.

For the scope of the tutorial the tools are in component libraries, without bothering with
different type of libraries.

In reality for tools things are a little more complicated: the interfaces and base classes (for any
tool you will want to allow various implementations) should be in a linker library, while tools
concrete implementations and algorithms using them should be in a (many) component library.

Gaudi Tutorial: Introduction 8-4

8-4 Gaudi Framework Tutorial, 2001

Tools Specific Interfaces

A tool must have additional interface
based on its functionality

– This additional interface must inherit from
the IAlgTool interface

– Tools performing a similar operation in
different ways will share the same interface
(ex. Vertexer)

Remember: The implementation of the IAlgTool interface is

done by the AlgTool base class, you don’t need to worry about it

Tools Specific Interfaces

Interfaces based on tool functionality must be defined. This is the interface with which
Algorithms interact. Many tools can perform similar operation in different ways but with the
same well defined protocol. For example fitting a vertex from a list of particles can be done in
more than one way but it will always require a list of particles and return a vertex.

In order for a tool to interact with the ToolSvc via this additional interface, the interface itself
has to inherit from IAlgTool. The implementation of the IAlgTool interface is done in the
AlgTool base class and does not have to be implemented in concrete tools.

Gaudi Tutorial: Introduction 8-5

8-5 Gaudi Framework Tutorial, 2001

Tools Interfaces

YourTool

IAlgTool

IYourTool

IAlgTool

• name(), type(), parent()

IYourTool

• Interface for your tool

Interfaces

•IAlgTool. Basic interface that any AlgTool implements and is used for bookkeeping purposes of the
ToolSvc.

•IYourTool. This represents the interface (abstract) for this particular tool or class of tools.

Gaudi Tutorial: Introduction 8-6

8-6 Gaudi Framework Tutorial, 2001

How to write concrete tools

When encapsulating some reoccurring
functionality in a tool you need to:

• Identify the tool functionality and define
its special interface: ITool.h

– Unless the interface already exist

• Inherit from the AlgTool base class in
MyTool.h

• Implement the tool specific functionality
in MyTool.cpp

How to write concrete tools: header file

By inheriting from the AlgTool Base class, concrete tool are managed by the ToolSvc. The
base class in fact, implements the IAlgTool interface that is the protocol used by the ToolSvc
to interact with tools.

Tools can be configured in the constructor or via the job options. Tools could need to use
services, for this reason the AlgTool base class provides a serviceLocator() method to help in
retrieving the necessary services.

Access to the Message Service is also provided.

Gaudi Tutorial: Introduction 8-7

8-7 Gaudi Framework Tutorial, 2001

Tools interfaces in practice

class IMCAcceptanceTool : virtual public IAlgTool {

public:

}

#include “GaudiKernel/IAlgTool.h”

static const InterfaceID

IID_IMCAcceptanceTool(“IMCAcceptanceTool”, 1, 0)

Necessary for Inheritance

Unique interface ID

/// Retrieve interface ID

static const InterfaceID& interfaceID() {

return IID_IMCAcceptanceTool;

}

/// + specific signature

virtual bool accepted(const MCParticle* mother) = 0;

Pure virtual method(s)

Tools interfaces In practice

A tool additional interface has to conform to the rules of a Gaudi interface.

It will have only pure virtual methods, with the exception of the static method InterfaceID. This
method returns a unique interface identifier to be used by the query interface mechanism.

See Gaudi User Guide for more details.

Gaudi Tutorial: Introduction 8-8

8-8 Gaudi Framework Tutorial, 2001

A concrete tool will inherit from the
AlgTool base class:

– has properties

– serviceLocator()

– msgSvc()

– the IAlgTool interface is implemented

– possible initialize(), finalize()
Called after creation by ToolSvc

AlgTool inheritance

Configurable via job options

Retrieve necessary services

Configured at creation

How to write concrete tools: header file

By inheriting from the AlgTool Base class, concrete tool are managed by the ToolSvc. The
base class in fact, implements the IAlgTool interface that is the protocol used by the ToolSvc
to interact with tools.

Tools can be configured in the constructor or via the job options. Tools could need to use
services, for this reason the AlgTool base class provides a serviceLocator() method to help in
retrieving the necessary services.

Access to the Message Service is also provided.

Gaudi Tutorial: Introduction 8-9

8-9 Gaudi Framework Tutorial, 2001

AlgTools life-cycle

AlgTools are created by a factory

static const ToolFactory<VertexSmearer> Factory;
const IAlgFactory& VertexSmearerFactory = Factory;

This must be instantiated in the
implementation file

•As for Algorithms but ToolFactory

AlgTool creation and Configuration

AlgTools are created and configured the same way as Algorithms, using the “factory” design pattern.
Using factories, opposite to using the new() operator directly, the creator of the AlgTool does not need
to know the concrete type. Technically this means that the header file containing the defining of the
concrete type does not need to be included in the creators code.

The way to achieve this is by instantiating a static object that knows to create an instance (the factory).
The convention is to use the templated class AlgFactory<T> for that purpose.

Gaudi Tutorial: Introduction 8-10

8-10 Gaudi Framework Tutorial, 2001

How to write concrete tools:
implementation file

Declare in constructor specific properties

Get services necessary for implementation
in constructor or initialize method

– Very similarly to Algorithms

Implement necessary functionality
– Additional methods specific to the tool

How to write concrete tools: implementation file

Anything that need to be held through the lifetime of a tool has to be set in the constructor or
the initialize method. While properties must be declared in the constructor, pointers to
necessary services can be set in either one. If reset mechanisms are implemented their
management has to be taken care of by the tool.

The necessary functionality of a tool is implemented in additional methods, this methods can
be executed as often (or rarely) as deemed necessary by the algorithm using the tool.

Gaudi Tutorial: Introduction 8-11

8-11 Gaudi Framework Tutorial, 2001

Hands on: MCAcceptanceTool

Write a simple Monte Carlo tool that:
• checks if a MCParticle satisfy a list of

criteria and returns true/false
– Define the cuts as properties of the Tool

• implements simple cuts:
– Minimum Pz cut

– Is produced close to IP (zOrigin < value)

– Does not decay before end of the magnet (zDecay>
value)

– Use what you learned yesterday about MCParticle &
MCVertex

When you start from scratch emacs will provide you with a skeleton

Hands on

In the following exercise we will write a simple Monte Carlo utility tool using some of the things
learned in the Gaudi Basics Tutorial.

Eventually we will use the tool in an Algortihm.

We will need to

- Look at the interface methods in

Components/IMCAcceptanceTool.h

- Write the tool itself

MCAcceptanceTools.h, MCAcceptanceTools.cpp

- Modify the algorithm that retrieves and uses the tool

AnalysisAlgorithm.h, AnalysisAlgorithm.cpp

Gaudi Tutorial: Introduction 8-12

8-12 Gaudi Framework Tutorial, 2001

Hands on: MCAcceptanceTool

Modify AnalysisAlgorithm to use the new tool
to check the decay products when
MCUtilityTool has matched the decay

– Retrieve and use the tool as you did with IMCUtilityTool

If you have time afterward (or at home)
extend the tool

– Check if the MCParticle has reached the last Tracking
stations (has hits in at least n layers of the Inner Tracker or
Outer Tracker after a certain z position)

Gaudi Tutorial: Introduction 8-13

8-13 Gaudi Framework Tutorial, 2001

Hands on: IMCAcceptanceTool
protocol

The IMCAcceptanceTool has to be located
in the subdirectory Components

– Follows the Gaudi(LHCb) conventions

– For your convenience a very simple one has
been prepared for you

virtual bool accepted(const MCParticle* mother) = 0;

Pure virtual methods

IMCAcceptanceTool

The location of the file follows the packaging convention for public include files.

The interface file has been provided for you, look through it to see what you would have to do
to implement a new tool’s interface

Gaudi Tutorial: Introduction 8-14

8-14 Gaudi Framework Tutorial, 2001

Hands on: MCAcceptanceTool.h
Inherit from IMCAcceptanceTool

Declare the interface method(s)

Remember to include the data members

class MCAcceptanceTool : public AlgTool,

virtual public IMCAcceptanceTool {

virtual bool accepted(const MCPartticle* mother);

double m_minPz; ///< Momentum cut

double m_mazZvertex; ///< Close to IP

double m_zMag; ///< Does not decay before

double m_zLastHit; ///< To extend: Zhit .gt.

int m_nLayers; ///< nLayers with Zhit .gt.

IDataProviderSvc* m_EDS; ///< To access the hits

Gaudi Tutorial: Introduction 8-15

8-15 Gaudi Framework Tutorial, 2001

Remember to include the necessary
headers

#include "GaudiKernel/GaudiException.h"

#include "GaudiKernel/ISvcLocator.h"

#include "GaudiKernel/IDataProviderSvc.h"

#include "GaudiKernel/SmartDataPtr.h"

#include "LHCbEvent/MCParticle.h"

#include "LHCbEvent/MCVertex.h"

#include "LHCbEvent/MCTrackingHit.h"

#include “CLHEP/Units/PhysicalConstants.h”

Hands on:
MCAcceptanceTool.cpp

To handle errors in constructor

Note:

Tools can be configured only in the constructor. This implies that Status Codes cannot be
returned in case of problems during the configuration, but you must throw an exception. The
ToolSvc takes care of handling these exceptions and to inform the algorithm requesting the
tool of the failure.

GaudiExceptions allow to provide additional information so that appropriate error messages
can be printed by the ToolSvc.

Gaudi Tutorial: Introduction 8-16

8-16 Gaudi Framework Tutorial, 2001

constructor

Declare specific Interface(s)

Declare Properties

Set their default values

declareProperty(“MinPz”, m_minPz);

declareProperty(“MaxZVertex”, m_mazZvertex);

declareProperty(“Zmagnet”, m_zMag);

declareProperty(“ZLastHit”, m_zLastHit);

declareProperty(“MinNLayers”, m_nLayers);

declareInterface< IMCAcceptanceTool >(this);

MCAcceptanceTool::MCAcceptanceTool(const std::string& type,
const std::string& name,
const IInterface* parent)

: AlgTool(type, name, parent),
m_minPz(0.0 * GeV), …

Gaudi Tutorial: Introduction 8-17

8-17 Gaudi Framework Tutorial, 2001

accepted
bool MCAcceptanceTool::accepted(const MCParticle* mcpart) {
/// Momentum cut (Pz)
if (mcpart->fourMomentum().z() < m_minPz) { return false; }
/// Particles are produced close to the interaction point
const MCVertex* vOrigin = mcpart->originMCVertex();
if (0 == vOrigin) { return false; }
double mcZpv = vOrigin->position().z();
if (fabs(mcZpv) > m_maxZVertex) { return false; }
/// Particles do not dissapear before the end of the magnet
const SmartRefVector<MCVertex>& vDecay = mcpart->decayMCVertices();
double zDecay;
if (vDecay.size() > 0) {

zDecay = vDecay[0]->position().z();
} else { zDecay = 20. * m; }
if (zDecay < m_zMag) { return false; }
return true;

}

Gaudi Tutorial: Introduction 8-18

8-18 Gaudi Framework Tutorial, 2001

...AnalysisAlgorithm.h
std::string m_newToolType; ///< Tool type
IMCAcceptanceTool* m_pAccTool;; ///< Reference to tool

...AnalysisAlgorithm::initialize()...
sc = toolSvc()->retrieveTool(m_newToolName, m_pAccTool);

...AnalysisAlgorithm::execute()...
if (result) {
// Check if daughters the acceptance cuts using the tool
const SmartRefVector<MCVertex>& decays=(*ipart)->decayMCVertices();
SmartRefVector<MCVertex>::const_iterator ivtx;
for (ivtx = decays.begin(); ivtx != decays.end(); ivtx++) {

const SmartRefVector<MCParticle>& daughters =
(*ivtx)->daughterMCParticles();

SmartRefVector<MCParticle>::const_iterator idau;
int nAccDaug = 0;
for(idau = daughters.begin(); idau != daughters.end(); idau++) {

bool mcAcc = m_pAccTool->accepted(*idau);
if (mcAcc) { nAccDaug++; }

}
log << MSG::INFO << "Number of accepted daughters = "

<< nAccDaug << endreq;
}

Hands on: using the new tool

Gaudi Tutorial: Introduction 8-19

8-19 Gaudi Framework Tutorial, 2001

! Extending the tool :
constructor or initialize

• Retrieve the Event Data Service

• In case of problems in constructor throw a
GaudiException

m_EDS = 0;

StatusCode sc=serviceLocator()->service("EventDataSvc",
m_EDS, true);

throw GaudiException("EventDataSvc not found",

"ToolException", StatusCode::FAILURE);

Gaudi Tutorial: Introduction 8-20

8-20 Gaudi Framework Tutorial, 2001

Extending the tool: accepted
accepted()...
if (zDecay < m_zMag) { return false; }
/// Is there a Tracking hit (IT or OT) after the min z position ?
/// Retrieve IT & OT Hits
typedef ObjectVector<MCTrackingHit> TrHits;
SmartDataPtr<TrHits> itHits(eventSvc(),"/Event/MC/MCInnerTrackerHits");
if(0 == itHits) {
log << MSG::ERROR << "Unable to retrieve the IT data <<endreq;
return false;

}
SmartDataPtr<TrHits> otHits(eventSvc(), "/Event/MC/MCOuterTrackerHits");
if(0 == otHits) { … }
// Check IT hits
int nITHits = 0;
for(TrHits::const_iterator iHit=itHits->begin(); iHit!=itHits->end(); iHit++) {
if ((*iHit)->mCParticle() == mcpart) {
if ((*iHit)->entry().z() > m_zLastHit) { nITHits++; }

}
}
… the same for OT hits …
int nTrackerHits = nITHits + nOTHits;
if(nTrackerHits >= m_nLayers) { return true; }
else { return false; }

