Gauss
LHCb Simulation Program

User Guide and Reference Manual

Corresponding to Gauss version v18r3

Author : I.Belyaev, G.Corti, S.Easo, W.Pokorski, F.Ranjard, P.Robbe
Revision : 1.4

Issue : 1

Created : November 22, 2004

Last modified : January 11, 2005

Contents

1 Introduction 4
1.1 Purpose and structure of this document, 4
1.2 Package structure 4
1.3 Problem reporting and resolution oL oL, 5

1.3.1 Gettinghelp 5

1.3.2 Reporting problems L L e 5
1.4 Editor’smote L 5
Configuring and executing a standard Gauss job 6
2.1 Introduction e 6
2.2 Supported platforms L 6
2.3 Setting up the environment o L 6
2.4 Structure of options fileso 7
2.5 Setting number of events Lo 7
2.6 Controlling the random number sequence: i.e. run ID and event ID 7
2.7 Defining the event type L 7
2.8 Defining the output file L L 8

2.8.1 Persistent technology 8
2.9 Defining monitoring histograms and ntuples 9
2.10 Reading a Gaussoutput file Lo oo 9
2.11 Running the job 9

2.11.1 Running Gausson Linux oL oL 9
Modifying and debugging Gauss 10
3.1 Manipulating Gauss.optS e 10
3.2 Manipulation Generator.optso 11

3.2.1 Changing Pythia options 11

3.2.2 Changing particle gun options 12
3.3 Manipulating Simulation.opts oL e 12

3.3.1 Printing MCtruth 12

page 2

3.3.2 Running jobs with different (incomplete) geometry 13

3.3.3 Changing production cuts Lo 13
3.3.4 Manipulating physics lists Lo oo oo 14
3.3.5 Manipulating ’actions’ Lo 14
3.3.6 Choosing the magnetic field ’stepper’ 14

4 Reference manual for Gauss v17r0 16
4.1 Event generation L L o 16
4.1.1 PythiaAlg 16
4.1.2 EvtGenTool e 18
4.1.3 Writing user decay files o oo 20
4.1.4 Particle properties e e e e 21
415 Bmixing e 22
416 CPuviolation e 23
4.1.7 Standalone generation 23
4.1.8 HepMC containers and conversion to Geant4 particles 23
4.1.9 Debugging and testing tools L 24
4.1.10 External Libraries o 25

4.2 GiGa - interface to Geant4d L 26
4.3 Detector simulation - general classes 26
4.3.1 GaussInitialisation oL oL 26
4.3.2 TrCutsRunAction 26
4.3.3 GaussPreTrackAction 27
4.3.4 GaussPostTrackAction 27
4.3.5 GaussStepAction e 27

4.4 Detector simulation - subdetector specific classes 27
441 GaussTracker L 27

442 GaussCalo. e 28
443 GaussRICH e 29

page 3

Chapter 1

Introduction

1.1 Purpose and structure of this document

The Gauss program is the LHCb Monte Carlo simulation application based on the Geant4 [1]
toolkit as well as various generator libraries (e.g. PYTHIA). It consists of two stages, the event
generation and the detector response simulation which can be run independently. It produces
Monte Carlo “hits” as its output which can then be processed by the Boole [2] digitization appli-
cation. It also provides MC truth information allowing to access the history of a particle producing
specific “hits”.

Gauss is built on the Gaudi framework [5] and provides mechanisms for sequencing algorithms
within the framework. Algorithms executed in Gauss have access to all the services currently
implemented in Gaudi, and to all data in the Gaudi data stores. Gauss uses CMT [3] for code
management. This guide assumes some familiarity with CMT and Gaudi.

This document is a user guide and reference manual for Gauss. It should be used in conjunction
with documentation available on the web at http://cern.ch/lhcb-comp/Simulation/. Chapter 2
describes how to configure and execute the released version of the program and should be useful
to anyone wishing to use Gauss. Chapter 3 describes how to modify the program and should be
useful for developers of simulation software. Chapter 4 describes the current functionality and is
intended as a reference guide.

1.2 Package structure

Releases of the GAUSS software project can be found in the LHCb software release area, in the
directory SLHCBRELEASES/GAUSS/GAUSS_vxry where x and y are respectively the major and
the minor Gauss version numbers. A given version of the GAUSS project contains all the CMT
Gauss packages specific to that version.

The GAUSS project depends on the LHCB core software project (event model classes, detector
description), on the GEANT4 project (Geant4 toolkit) and on the GAUDI framework. The specific
versions of different project and packages which a given version of GAUSS depends on can be found
in the GaussEnv vxry package.

The Gauss application resides in the Sim/Gauss package of the GAUSS project. This pack-
age is used to build and execute the application. It has the following directory structure:

—doc release notes

— job example job for Linux
—options default and example job options
— cmt CMT requirements file

— <binary> platform/compiler dependent directories for the different binaries

page 4

1.3 Problem reporting and resolution

1.3.1 Getting help

If your problem cannot be resolved by looking at this guide, you could try using the Gauss
discussion mailing list, lhcb-gauss@cern.ch.

1.3.2 Reporting problems

If you think you have found a bug in Gauss, or if you would like to request a new feature, please
use the Savannah problem reporting system: hitp://savannah.cern.ch/projects/gauss .

1.4 Editor’s note

This document is a snapshot of the Gauss software at the time of the release of version v18r3. We
have made every effort to ensure that the information it contains is correct, but in the event of any
discrepancies between this document and information published on the Web [8], the latter should
be regarded as correct, since it is maintained between releases and, in the case of code documen-
tation [9], it is automatically generated from the code. We encourage readers to provide feedback
about the structure, contents and correctness of this document and of other LHCb software doc-
umentation. Please send your comments to Florence. Ranjard@cern.ch or Gloria.Corti@cern.ch.

page 5

Chapter 2

Configuring and executing a
standard Gauss job

2.1 Introduction

The released version of Gauss contains the recommended configuration for a standard LHCb
simulation job. This chapter describes how to configure and execute a standard job; familiarity
is assumed with CMT [3]. Instructions for modifying the functionality of Gauss are given in
Chapter 3.

2.2 Supported platforms

Gauss is currently built and supported on the following platforms:

e Linux RedHat 7.3 with gce 3.2.3 compiler (-O2 and debug versions provided)

2.3 Setting up the environment

Before starting to work with Gauss, you need to set up CMT. When you log in to lxplus!,
the CMTPATH environment variable is normally set to $HOME/cmtuser. This directory is auto-
matically created the first time you login as an LHCb user and is populated with a special file
cmt/project.cmt. If your working directory is something other than cmtuser, modify the CMT-
PATH accordingly and ensure the special file cmt/project.cmt is present there. 2 In case this is
not done for you your can setup the CMT environment via the command

source $LHCBHOME/scripts/CMT. (c)sh

You now have to tell CMT which version of Gauss you wish to work with. You do this with the
command

GaussEnv v18r3

I These instructions are given for an LHCb account on lxplus at CERN, but should be very similar for any site
with CMT installed.

2Previous version of Gauss use an older version of CMT with a different CMTPATH and without the need of the
cmt/project.cmt file. Refer to the web instructions on how to still use the previous versions of CMT [4] (< v176)
if you need to run a previous version of Gauss.

page 6

This command appends to the CMTPATH the directories required by CMT to locate in the release
area all packages required by Gauss v18r3.

Even if you wish to run a standard job, you will need to makes some modifications, if only to
define the number and the type of events to simulate and the output file of your job. To do so,
get a copy of the Gauss package into your CMT working directory:

cd $HOME/cmtuser
getpack Sim/Gauss v18r3
cd Sim/Gauss/v18r3

2.4 Structure of options files

The directory options contains various files with suffix .opts to control the configuration of a Gauss
job. The default configuration is steered by the top level option file Gauss.opts, where the main
parameters you may wish to change are listed. Detailed steering of other options are contained in
specialized options file and will be refered to later. Some example options for special configurations
are also provided.

2.5 Setting number of events

Before running any job, you certainly want to specify how many events you want to simulate. You
do this by changing the following line in the top level job options file, i.e. in Gauss.opts:

ApplicationMgr.EvtMax = 500;

2.6 Controlling the random number sequence: i.e. run ID
and event ID

The random number seed (the entire random number sequence used by all the generators in Gauss)
is uniquely determined for each event by the the Run ID (RunNumber) and by the event ID (the
actual EventNumber in the processing). This allows the generation of independent data sets as
well as full reproducibility of events.

In Gauss.opts you can set the run ID (run number)

Gauss.RunNumber = 100;

and the number of the first event

Gauss.FirstEventNumber = 1;

By setting these two numbers you can generate separate data sets or re-run particular events in
order to debug them.

2.7 Defining the event type

When running a Gauss job you will need to specify what type of events you want to simulate.
The default is min-bias events (type 30000000). In case you wanted to simulate particular signal

page 7

events or BBbar inclusive ones, you should add at the end of the job options (for example as last
line of Gauss.opts) a line like:

#include ‘‘$DECFILESROOT/options/10000000.0pts’’

where the number in front of *.opts’ corresponds to the event type you want to simulate (BBbar
inclusive in the above example). Predefined options for the various event types that can be
generated are located in the special package DecFiles. The version of the DecFile package in use
in a given version of Gauss is the latest available at the moment of a Gauss release. It could be
necessary to use new event types with an existing Gauss release, in which case a new compatible
version of DecFiles can be specified when running a job. by setting the $DECFILESROOT
environment variable directly or modifying the Gauss requirements files. You can see what kind of
event types are available by looking in SLHCBRELEASES/DBASE/Gen/DecFiles/v6r4/options/
directory or on the web http://robbep.home.cern.ch/robbep/EvtGen/EventTypes.html

2.8 Defining the output file

Gauss writes an event data output file (.sim) by default. The options to control this output are
show in the listing below:

1: ApplicationMgr.OutStream += ‘‘GaussTape.opts’’;
2: GaussTape.Output = ¢ ‘DATAFILE=’PFN:GaussPool_30000000.sim’
TYP="POOL_ROOTTREE’ OPT=’REC’> ‘‘;

To switch off writing of the output file comment out line 1. The name of the output file is specified
by modifying line 2. In the example listed will be written in the directory you are running Gauss
from.

The content of the .sim file is defined in the file GaussTape.opts. It should not normally be
necessary to modify this content, but you may do so to e.g. write a reduced dataset or additional
RICH information for special studies.

2.8.1 Persistent technology

This version of Gauss supports only the common LCG format (“POOL”) persistency technology.
The last version supporting also the Gaudi “home-grown” technology (GaudiPoolDB) was v16r0.
The underlying storage media use is ROOT. The technology “I'YPE” must be specified in the
output file definition: Gauss requires you to use “POOL_ROOTTREE” necessary for writing files.

One feature of POOL is that internal references between files are made using logical file names
(LNF). The mapping between LNFs and physical file names (PFN) is done by one or more file
catalogues. A Gauss job will not need any input file catalogues but will write an output one. The
name of the file catalogue to write 3 is specified via the following option:

PoolDbCacheSvc.Catalog = '"xmlcatalog file:NewCatalog.xml" ;

if the line above is missing or commented a catalogue with the name test_catalog.xml will be
created where you are running from. If a catalog of the same name exists it will be updated with
the new output file entry. In order to be able to preserve the knowledge of the LFN when reading
back the .sim file for later processing (e.g. with Boole) you should save the read-write catalog
at the end of the job (for example by merging it with a master one if you are not updating an

3in general a list of catalog can be provided, the first in the list is read-write, those following are read only, hence
in a standard Gauss job only the first one in the list will be relevant

page 8

existing one). If you move the output file to a different location(e.g. copy it to a castor directory)
you have to update the catalog file with the new location.

2.9 Defining monitoring histograms and ntuples

Monitoring in Gauss is performed in the Monitor sequence. In this sequence predefine ntuples and
histograms are filled both for the Generator and the Simulation phases of Gauss. In production
the monitor sequence is switched off. To turn it on you will have to uncomment the line

ApplicationMgr.TopAlg += ¢‘Sequencer/Monitor’’;

in Gauss.opts. A default configuration for monitoring histograms and ntuples is available in
Monitor.opts.

2.10 Reading a Gauss output file

When running a Gauss application you will most likely want to either look at some distribution
filled during the processing (see Section 2.9) or you will want to process a Gauss output file with
the digitization application, Boole. In this case you should refer to the Boole User Guide [2] for
details. In the special cases where you will only want to look at event data objects contained in
the .sim file as produced by Gauss an example options file is available using Gauss itself. The
example options, GaussRead.opts, will run the same monitor phase as the one that can be run
during the production of events but reading the .sim file. To read a file you should overwrite the
behaviour of a “normal” Gauss job that has no events input data. This is done by setting the
line:

ApplicationMgr.EvtSel = "";

2.11 Running the job

The following assumes that you have already configured CMT and Gauss as explained in Sec-
tion 2.3. The commands shown assume that you have set your default directory (cd) to
$HOME/cmtuser/Sim/Gauss/v18r3.

Running the job involves three steps: building the executable, setting up the environment (using
the setup file created by CMT) and executing the job with the appropriate setting chosen in the
steering job options file.

2.11.1 Running Gauss on Linux

To run Gauss interactively on Linux, use the following commands:

cd cmt

source setup.csh

make

cd job

../Th73_gcc32/Gauss.exe ../options/Gauss.opts >& Gauss.logk

you can also use the defined alias gauss which corresponds to calling the executable with the
default jobs options (Gauss.opts)

page 9

e e

Chapter 3
Modifying and debugging Gauss

The configuration options described in Chapter 2 are the most basic ones used to setup a typical
production job. In this chapter we study how to modify the behavior of Gauss in a non-standard
way. What is described here are the more common examples, but the possibilities are endless - if
you know what you are doing!

It should be noted that the Gaudi job options parses always takes into account the last definition
of a job option. Therefore, it is always possible to redefine the value of an option by including the
same options again. Alternatively, you can simply edit the appropriate job option file provided by
Gauss (or one of the packages it is using) and modify the entry there.

3.1 Manipulating Gauss.opts

As it was mentioned at the beginning of this document, Gauss consists basically of two inde-
pendent stages, event generation and detector response simulation. These two stages can be
run consecutively within one job (the default configuration) or separately (in order to study the
event generators or to run the simulation using events saved in a file). In main job options file
Gauss.opts you have

ApplicationlMgr.TopAlg =
{"GaussInitialisation/GaussInit",
"Sequencer/Generator",
"Sequencer/Simulation"};

which defines the two stages (GaussInitialisation is a mandatory algorithm used to perform some
standard tasks like initializing the random number generator, creating the event header, etc and
should not be removed), and

#include "$GAUSSOPTS/Generator.opts"
#include "$GAUSSOPTS/Simulation.opts"

which makes the job options files controlling those two stages to be included.

In order, for instance, to run the job with only the generation sequence on, you should remove the
last entry in the list of 'TopAlg’ and leave

ApplicationMgr.TopAlg =
{"GaussInitialisation/GaussInit",
"Sequencer/Generator"};

page 10

Y se e e

Alternatively, if you wanted to run the simulation using some already ’pre-generated’ events you
should have

ApplicationMgr.TopAlg =
{"GaussInitialisation/GaussInit",
"Sequencer/Simulation"};

and in addition you should specify the input file (containing the generated events)

ApplicationMgr.EvtSel = "<file_name>" ;

3.2 Manipulation Generator.opts

The default way of running a Gauss job is to generate events (with pile-up) using Pythia [10] and
EvtGen [11] (used to decay almost all short-lived particles and in particular b-hadrons). It is very
likely, however, that you will want to run Gauss with the so called ’single particle gun’, i.e. a very
simple generator ’shooting’ single particles of given type, energy, etc into the detector. In order
to do that you have to properly specify the members of the generation sequence. The default is

Generator.Members =
{"SignalDecayAlg", "PythiaAlg", "SetDecayAlg", "EvtDecayAlg"};
Generator.Members += {"SmearVertexAlg"};

where the first set of algorithms is responsible for calling the appropriate event generator and
decay package (for more details see Chapter 4), while SmearVertexAlg is simulating the smearing
to the primary vertex which is due to the size of the colliding bunches. In order now to run the
single particle generation you should have the members of the generation sequence to be

Generator.Members = "ParticleGun";

and the pile-up switched off (which doesn’t make sense when you generate events with the particle
gun)

ParticleGun.Mode=0;

In theory, one can also think about some more ’exotic’ setups, like for example running Pythia gen-
eration without the smearing of the primary vertex, or without the pile-up (PythiaAlg.Mode=0;)
or running the particle gun with the smearing (determined by the nature of the LHC beams) of
the ’shooting point’. These, however, do not seem to be of practical use.

Apart from specifying which generator you want to run, you might also want to configure it. The
next two subsections briefly discuss how to change the options of Pythia and ParticleGun.

3.2.1 Changing Pythia options

The default options for Pythia (hardcoded in PythiaAlg and repeated in the option file Pythi-
aSettings.opts) correspond to the “LHCb tunning” and normally should not be changed (unless
you want to perform some advance generators studies). In order to set any of the Pythia flags you
can use the following syntax

page 11

PythiaAlg.UserPythiaCommand =
{"<common block name> <variable name> <index> <value>"};

3.2.2 Changing particle gun options

When generating particles with single particle gun you can specify a number of parameters like,
the position of the vertex (in mm)

ParticleGun.xVertexMin =
ParticleGun.xVertexMax =
ParticleGun.yVertexMin =
ParticleGun.yVertexMax =
ParticleGun.zVertexMin =
ParticleGun.zVertexMax =

-e

O O O O OO
[l eNeNeNe Ne]

the particle type

ParticleGun.PdgCode = 211;

the mode of the particle gun (’0’ means that you specify px, py, pz, while 1’ means that you
specify 6 and ¢)

ParticleGun.GunMode=1;

and the momentum magnitude (in GeV) and direction (in rad)

ParticleGun.MomentumMax = 10.0;
ParticleGun.MomentumMin =
ParticleGun.ThetMin = 1.0;
ParticleGun.ThetMax = 1.0
ParticleGun.PhiMin =
ParticleGun.PhiMax

0.0;
0.0

3.3 Manipulating Simulation.opts

The Simulation.opts file configures and controls the execution of the Geant4 simulation. Most of
the entries there should never be moved (or removed) and are mandatory for the correct execution
of the program. There are, however, a few things that you might want to set up according to your
needs.

3.3.1 Printing MC truth

In some cases, for the purpose of debugging, it might be useful to print on the screen the contents
of the MCParticle and MCVertex containers (MC truth) that are kept (saved in the file) after the
event. In order to do so, you should add (uncomment - see the default options) the following entry
to the list of the simulation members

Simulation.Members += { "PrintEventAlg" };

page 12

Y se e e

It is important to note here, that the order of the members is important and in particular the
members

Simulation.Members = { "GiGaDataStoreAlgorithm/GiGaStore",
"GiGaInputStream/Geo", "GiGaInputStream/Kine"};

should always be called first.

3.3.2 Running jobs with different (incomplete) geometry

In some rare cases (to study the behavior of one particular detector, for instance) you might want
to run jobs with some parts of the geometry removed. In order to do that you can comment out
some of the entries from the following (default) list

Geo.StreamItems += {"/dd/Structure/LHCb/Pipe"};
Geo.StreamItems += {"/dd/Structure/LHCb/Magnet"};
Geo.StreamItems += {"/dd/Structure/LHCb/Velo"};
Geo.StreamItems += {"/dd/Structure/LHCb/Velo2Richl1"};
Geo.StreamItems += {"/dd/Structure/LHCb/Rich1"};
Geo.StreamItems += {"/dd/Geometry/Richl/RichlSurfaces"};
Geo.StreamItems += {"/dd/Geometry/Rich1/RichHPDSurfaces"};
Geo.StreamItems += {"/dd/Structure/LHCb/0T"};
Geo.StreamItems += {"/dd/Structure/LHCb/IT"};
Geo.StreamItems += {"/dd/Structure/LHCb/Rich2"};
Geo.StreamItems += {"/dd/Geometry/Rich2/Rich2Surfaces"};
Geo.StreamItems += {"/dd/Structure/LHCb/Spd"};
Geo.StreamItems += {"/dd/Structure/LHCb/Converter"};
Geo.StreamItems += {"/dd/Structure/LHCb/Prs"};
Geo.StreamItems += {"/dd/Structure/LHCb/Ecal"};
Geo.StreamItems += {"/dd/Structure/LHCb/Hcal"};
Geo.StreamItems += {"/dd/Structure/LHCb/Muon"};

Alternatively, you might also want to run jobs with a completely different (test beam setup, for
instance) geometry. In such a case the entire list above, should be replaced by your new entries.

3.3.3 Changing production cuts

There are presently three processes in Geant4 which are controlled (the infrared divergence) using
the production cuts: ionization, bremsstrahlung, and /mu-pair production. The production cuts
exist, therefore, for the electrons, positrons and photons. They can be set via the job options as
follows

GiGa.PhysicsList = "GiGaPhysListModular/ModularPL";
GiGa.ModularPL.CutForElectron = 10000.0 * m;
GiGa.ModularPL.CutForPositron = 5.0 * mm;
GiGa.ModularPL.CutForGamma = 10.0 * mm;

It should be noted here that although the cuts for gammas and for positrons can be changed
arbitrarily (to study their effect on the physics), the cut for electrons is set to a very large value
and should not be changed (without a appropriate change in the digitization algorithms). The
reason for that cut to be so high (infinite in practice) is that we do not want to simulate the delta
rays. The effect of the delta rays is presently taken into account at the level of digitization and
therefore lowering the production cut for the electrons would make the whole chain inconsistent.

page 13

3.3.4 Manipulating physics lists

Gauss uses the concept of ’modular physics lists’ i.e. it allows loading several 'modules’ which
implement specific physics processes. Such an approach is very flexible and particularly useful for
example in the case of the optical processes which need to be loaded for the RICH simulation. The
user in general does not need to manipulate the physics list. The only place where he or she might
want to change the settings is the choice of the ’hadronic physics’. At the present there are two
available models in Gauss, LHEP and QGSP (see [1]). The first one (default) is a parametrized
model which is supposed to be the fastest one, while the second one being more theory-driven,
might in some cases reproduce the data better at the price of slightly lower performance. You can
chose of the model commenting out/uncommenting the following lines in Simulation.opts

GiGa.ModularPL.PhysicsConstructors += {"HadronPhysicsLHEP"};
//GiGa.ModularPL.PhysicsConstructors += {"HadronPhysicsQGSP"};

3.3.5 Manipulating ’actions’

The main experiment-specific part of the Geant4 simulation application is (apart from the geom-
etry and the sensitive detectors) the implementation of the so-called ’actions’ (stepping actions,
tracking action, event actions, etc) determining what is actually happening within the simulation
loop. A more detailed discussion on the LHCb-specific implementation of those ’actions’ will fol-
low in Chapter 4. Here we will briefly describe how to control the contents of the MC truth that
is saved after each event.

The default settings are that the primary particles are stored (this is in fact a mandatory setting,
ensuring consistency of the MC truth), the particles 'marked’ (by, for instance sensitive detectors
when hits were generated) are stored and the entire decay chains generated by EvtGen are stored.

GiGa.TrackSeq.PostTrack.StorePrimaries = true;
GiGa.TrackSeq.PostTrack.StoreMarkedTracks = true;
GiGa.TrackSeq.PostTrack.StoreForcedDecays = true;

In addition to that, you can store particles according to their energy

GiGa.TrackSeq.PostTrack.StoreByOwnEnergy = true;
GiGa.TrackSeq.PostTrack.0OwnEnergyThreshold = 10.0 * GeV;

to the type of their ’creator process’

GiGa.TrackSeq.PostTrack.StoreByOwnProcess = true;
GiGa.TrackSeq.PostTrack.StoredOwnProcesses = {"Decay"};

as well as according to the particle type, daughters’ type, daughters’ energy and daughters’ creator
process.

3.3.6 Choosing the magnetic field ’stepper’

Geant4 offers a number of ’steppers’ that can be used to integrate the equation of motion of a
particles in the magnetic field. You can choose the stepper using

GiGaGeo.FieldManager = "GiGaFieldMgr/FieldMgr";
GiGaGeo.FieldMgr.Stepper = "ClassicalRK4";

page 14

Y se e e

you can also set a number of parameters like minimal step, delta intersection or delta one step

(see [1)).

page 15

Chapter 4

Reference manual for Gauss v18r3

4.1 Event generation

Gauss uses two different packages to generate events, Pythia and EvtGen. Pythia generates p-p
interactions and decays particles. It stops when a ”stable” particle for Pythia is reached in the
decay tree (usually a meson or a hadron). EvtGen will then take care of the generation of the
decay of this particle.

Three generation methods are implemented in Gauss:

forced fragmentation the b quark in the event is forced to hadronize with the correct light
quark to give the correct b hadron type of the signal decay mode,

repeated hadronization when an event contains a b quark, it is hadronized several times until
the correct b hadron type is found,

plain Pythia full events are generated and rejected until it contains the correct b hadron type.

The algorithms and tools used for the event generation process are located in the
Gen/GeneratorModules package.

4.1.1 PythiaAlg

The interface to Pythia is implemented in the algorithm PythiaAlg of the GeneratorModules
package. This algorithm takes care of the primary p-p interactions generation and can be used to
generate minimum bias, bb events, signal events or other types of events (c¢, ...). Hadrons which
are known to EvtGen' are declared stable for Pythia so that Pythia will stop the decay chain when
it will find such a stable particle. The content of the event is then written in HepMC format in the
container "/Event/Gen/HepMCEvents" and is available for subsequent algorithms like for example
EvtDecayAlg which will decay particles produced by Pythia.

In case the generation method is the ”forced fragmentation”, PythiaAlg has to know what should
be the b hadron that has to be produced. The algorithm reads this information from the container
"/Event/Gen/SignalDecay" which is filled by the algorithm SignalDecayAlg and which contains
an HepMCEvent with only the signal b hadron (that is to say the hadron decaying to the mode
described by the event type of the job).

For the 2 other generation methods, the signal b hadron is generated at rest by EvtGen inside
PythiaAlg, using the b flavour determined by Pythia (this enables to keep the possible pro-

LA particle is known to EvtGen if it has a decay table declared in one of the decay files (the user decay file or
the generic decay file DECAY.DEC).

page 16

duction asymmetries). The signal b hadron (generated at rest) is then stored in the container
"Event/Gen/SignalDecay".

The algorithm PythiaAlg takes care of decaying excited B resonances with EvtGen so that a signal
B hadron might come from a B** decay. The same algorithm also ensures that the correct B and
B proportions are generated correctly.

Finally, PythiaAlg decays the signal B hadron tree with EvtGen in case the generation method is
“plain Pythia” or the “repeated hadronization”.

The generation of pile-up events is implemented in this algorithm. When this option is activated,
minimum bias events are generated and associated with b events containing the requested signal
decay mode to form full events. There exist 2 different ways of generating pile-up events which
can be controled via job options.

e Fixed number of pile-up events. The Mode number has to be set to 0 and the number of
pile-up events is the value given to the MeanInt variable:

PythiaAlg.Mode = 0 ;
PythiaAlg.MeanInt = 2 ;

e Variable number of pile-up events. The number of pile-up events is randomly generated for
each event. First, the time ¢ at which the interaction occurs with respect to the re-fill of the
beam is generated with an uniform distribution in the interval between 0 and FillDuration.
Then the number of pile-up events is generated according to a Poisson law with mean value

equal to:

¢ TotalXSect
N = Le semmecayrme 20 228C (4.1)
10 x CrossRate

where
Luminosity X FillDuration

. __ FillDuration
BeamDecayTime { 1 — e~ BeanbecayTine

L=

(4.2)

All variables can be modified by job options. The default values are:

PythiaAlg.Mode = 1 ;
PythiaAlg.Luminosity = 2.0 ;
PythiaAlg.FillDuration = 7.0
PythiaAlg.BeamDecayTime = 10.
PythiaAlg.CrossRate = 30.0 ;
PythiaAlg.TotalXSect = 102.4 ;

0 ;

Pythia is generally configured interacting with Fortran common blocks. PythiaAlg offers the
possibility to modify some of these configuration common blocks using job options. The default
settings corresponding to the "LHCDb tunning” are hard-coded in PythiaAlg and are repeated in
the option file PythiaSettings.opts of the Gauss package.

The way to interact with Pythia configuration is to add commands to the UserPythiaCommand
vector:

PythiaAlg.UserPythiaCommand += { "commandl1" , "command2" } ;

where the format of the command is: <command> <entry> (<argl> <argd>).
The available commands are listed in Table 4.1.

Beam parameters are also defined through PythiaAlg. The default parameters are listed here and
can be changed in job option files:

page 17

PythiaAlg.BeamEnergy = 7000.0 ;
PythiaAlg.VerticalXAngle = 0.0 ;
PythiaAlg.HorizontalXAngle = 285.0 ;
PythiaAlg.Emittance = 0.503 ;
PythiaAlg.Beta = 10.0 ;

Cuts can be applied at generator level in order to speed up the generation. The available cuts are:

e Cut on the angle of the signal particle: the signal particle is requested to be emitted with an
angle with respect to the z axis below the value ThetaMax. By default, this value is equal
to 400 mrad. If the signal particle is emitted backward (with p, < 0), the full interaction is
inverted (p, — —p, and z = —2).

o Cut on the momentum of the signal particle: the momentum of the signal particle is requested
to be larger that Pmin. By default, this value is equal to 0.

The cut parameters can be set by job options:

PythiaAlg.ThetaMax = 0.4 ;
PythiaAlg.Pmin = 0.0 ;

4.1.2 EvtGenTool

The decay package EvtGen is interfaced to Gauss by two algorithms SignalDecayAlg and EvtDe-
cayAlg.

e SignalDecayAlg produces a b hadron at rest and generates the decay chain according to the
signal decay mode. Pythia is then aksed to force the hadronization of the produced b or b
quark into the b hadron decided at this stage.

e FEutDecayAlg decays generically all particles produced by Pythia which are known to EvtGen
(that is to say which have a decay table defined in the generic EvtGen decay table DE-
CAY.DEC). This algorithm also substitutes to the signal b hadron produced by Pythia the
decay chain produced by the first algorithm SignalDecayAlg in case of forced fragmenta-
tion generation method or in PythiaAlg in case of plain Pythia or repeated hadronization
generation method, boosting it to the correct frame.

The interaction with EvtGen and the generation sequence is achieved through a Gaudi tool called
EvtGenTool. The tool has several properties which can be modified by job options: the generic
decay file name, the user decay file name which defines the signal decay chain to generate, the
event type number (which follows conventions described in [14]), the PDG codes of the signal
particles to generate and the generation method.

ToolSvc.EvtGenTool.DecayFile = "$DECFILESROOT/dkfiles/DECAY.DEC" ;
ToolSvc.EvtGenTool.UserDecayFile = "MyDecayFile.dec" ;
ToolSvc.EvtGenTool.EventType = 99999999 ;
ToolSvc.EvtGenTool.BhadronID = { 511 , -511 } ;
ToolSvc.EvtGenTool.ForcedFragmentation = false ;
ToolSvc.EvtGenTool.RepeatedHadronization = true ;

These options are already defined for a number of decay modes together with the corresponding
signal decay file. For a given event type N, these options are automatically defined when including
the option files ?$DECFILESROOT /options/N.opts”. The available event types can be found in
the package DecFiles or here [15].

page 18

The BhadronID property can be either :

1. empty to generate minimum bias events,

2. a unique particle code number. In this case only signal events of the indicated b hadron type
will be generated.

3. two opposite particle code numbers. A mixture of b hadrons a b hadrons will be generated,
both of them decaying according to the same signal decay file. This is the setting used in
already existing option files which are in the DecFiles package.

4. several particle codes. Inclusive generic decays of the indicated meson types will be gener-
ated.

If one wants to generate inclusive decays of only one particle or two particles which are charge
conjugates, one has to specify it in job options through the variable InclusiveProduction which
is set to false by default :

ToolSvc.EvtGenTool.InclusiveProduction = false ;

4.1.2.1 SignalDecayAlg

This algorithm is activated only if the generation method is the ”forced fragmentation” method.
For the 2 other methods, this algorithm is skipped. The aim of this algorithm is to pre-decay the
signal b hadron at rest with EvtGen in order for Pythia to know how to hadronize the b quark (or
the b quark) in PythiaAlg.

If one wants to generate a mixture of B and B hadrons, the algorithm generally generates both
flavours with 50 % probability. However, if the decay model used to decay the signal b hadron
contains non vanishing CP asymmetries, the correct asymmetry will be generated by the algorithm.

A HepMCEvent is then created to contain the result of this first step and is stored in the container
"/Event/Gen/SignalDecay" which will be read back by PythiaAlg and EvtDecayAlg but which
can also be saved to be used in generator stand alone studies.

4.1.2.2 EvtDecayAlg

This algorithm generates with EvtGen the decay of all particles which have not been decayed by
Pythia (that is to say practically all particles, and not only the signal b hadron). Particles that will
be decayed by EvtGen in this algorithm are flagged by the intermediate algorithm SetDecayAlg.

EuvtDecayAlg reads back the container " /Event/Gen/HepMCEvents" and update the HepMCEvents
that it contains to add the particles generated by EvtGen. The resulting HepMCEvent is again
stored in the same container "/Event/Gen/HepMCEvents" 2. The algorithm reads also the content
of the container "/Event/Gen/SignalDecay" created by PythiaAlg or SignalDecayAlg depending
on the generation method and which is filled by the signal b hadron and its decay products, in
the b hadron rest frame. The b hadron decay tree is boosted to the laboratory frame and is then
substituted in the full event to the corresponding b hadron generated by Pythia but which has
been left undecayed up to now.

For convenience or to generate ”clean events” (events with only the signal decay chain), the signal
b hadron decay chain in the laboratory frame can be stored separatly in a specific container
"/Event/Gen/BHadronTree". This possibility is disabled by default but can be activated by job
options:

2This does not follow the rule that an object in the event store cannot be modified without changing the name
of the container.

page 19

EvtDecayAlg.IsolateSignal = true ;

4.1.3 Writing user decay files

The user decay file contains information about how to decay the particles of interest. To decay
the particle P into D1D>D3 according to the model MODEL with the branching ratio Br, the
syntax is the following:

Decay P
BR D1 D2 D3 MODEL (<argl> <arg2> ...) ;
Enddecay

The decay model MODEL can take one or more arguments that are written after the model name.
A list of all available decay models can be found in the EvtGen documentation.

The instruction CDecay automatically defines the CP conjugate mode for the particle anti-P:

CDecay anti-P

The intruction Decay erases all previous definitions of decay modes for the particle P. If the sum
of the branching fractions defined between Decay and Enddecay is not equal to 1, EvtGen will
automatically scale the branching fractions to have a sum equal to one.

In order to force a particle to decay into a specific decay mode, it is usually convenient to define
an alias to this particle. Then the generic decay modes defined for the particle in DECAY.DEC
will not be altered.

Aliases are predefined for b hadrons to be able to force the decay of the signal b hadron and only
it. Then only one b hadron in the event will decay according to the decay mode defined for the
b hadron alias. All other b hadrons in the event will decay according to the generic decay table
DECAY.DEC (unless it is redefined on purpose in the user decay file). Signal B aliases are listed
in Table 4.2.

These aliases are activated and available only if the property ToolSvc.EvtGenTool.BhadronID
is set to the corresponding PDG Id. The aliases for charge conjugate particles are declared as

charged conjugates which means for example that the B° alias will oscillate to the B alias.

Aliases for other particles can be defined at the beginning of the user decay file with the keyword
” Alias” followed by the alias name and the particle name for which the alias is created. In order
to generate a decay mode and the charge conjugate decay mode, one has to specify which is the
charge conjugate of the alias with the keyword “ChargeConj”.

The following example illustrates how to generate B® — D=7+ and B° — Dta— with D* —
KFnEgnt:

page 20

Define an alias for D+

Alias MyD+ D+

Define an alias for D-

Alias MyD- D-

Declare that MyD+ is the charge conjugate of MyD-
ChargeConj MyD+ MyD-

Decay table for BOsig (predefined alias for BO)
Decay BOsig

Use D- alias to be able to force D- decay
1.000 MyD- pi+ PHSP;

Enddecay

Decay table for anti-BOsig
CDecay anti-BOsig

Decay table for MyD+

Decay MyD+

1.000 K- pi+ pi+ D DALITZ;
Enddecay

Decay table for MyD-
CDecay MyD-

End

An option file has to be written together with each user decay file to set up correctly EvtGen to
use it. The option file corresponding to the previous example would be:

// The Event Type number
ToolSvc.EvtGenTool.EventType = 99999999 ;

// The signal B Id

// To generate a mixture of BO and BObar
ToolSvc.EvtGenTool.BhadronID = { 511 , -511 } ;
// or to generate only BO
ToolSvc.EvtGenTool.BhadronID = { 511 } ;

// The name of the user decay file
ToolSvc.EvtGenTool.UserDecayFile = "MyDec.dec" ;
// The generation method (Repeated fragmentation by default)
ToolSvc.EvtGenTool.ForcedFragmentation = false ;
ToolSvc.EvtGenTool.RepeatedHadronization = true ;

4.1.4 Particle properties

The properties of the particles (masses, widths, ... are taken from the Gaudi
ParticlePropertySvc. Since EvtGen identifies particles with their names, the Gaudi
ParticlePropertySvc data table (ParticleTable.txt) contains also the EvtGen name of each
particle. In decay files, this EvtGenName string has to be used and the program will stop if it
finds in a decay table a particle whose EvtGen identifying string has not been declared in the
ParticlePropertySvc. Then to write user decay files, the names of particles to use can be found
in this file at the location $PARAMFILESRO0T/data/ParticleTable.txt.

EvtGen uses as input a file containing all particles parameters. To transmit the properties contained
in the Gaudi ParticlePropertySvc into EvtGen, a temporary file is created by EvtGenTool and

page 21

is read by the EvtGen engine. This temporary file is called tempPdlFile.txt and is deleted by
default at the end of the Gauss job. It is possible to keep it for debugging purposes, modifying
the job options:

ToolSvc.EvtGenTool.KeepTempEvtFile = true ;

Masses of particles with non-zero width will be generated according to a Breit Wigner lineshape
by EvtGen and decay times of particles with non-zero lifetime will be generated according to a
exponential funtion. In order to simplify the generation, it is better to generate only Dirac like
mass distributions for particles with negligible widths or only immediate decays for particles with
negligible lifetimes. A cut is defined in EvtGenTool below which the width of the particle will be
considered to be equal to 0 or below which the lifetime of the particle will be considered to be
equal to 0. On the other hand, particles with a very large lifetime do not have to be decayed by
EvtGen because they will likely interact in the detector matter and will then be treated by the
Simulation part of Gauss. A cut is also applied to set to 0 the lifetime of particles above this
threshold. These particles must not have a decay table in any of the EvtGen decay file (the user
decay file or the global decay file) and will then be considered as stable by EvtGen which will not
assign any decay position to them. The cut values are c7,;;, = 0.1 um, cTyee = 10* mm and
Fmin =1.5keV.

In order to unify particle properties amongst all generation modules, Pythia masses, lifetimes and
widths are updated and also set to the ParticlePropertySvc values. There are exceptions such
as quarks, di-quarks, W, Z, Higss and other Pythia special particles. Their parameters are kept
as determined by Pythia by default. It is important to note that the parameters are the one used
by EvtGen, that is to say with the same restrictions on width and lifetime. Pythia generates broad
resonances according to a non relativistic Breit Wigner form whereas EvtGen uses a relativistic
form by default.

4.1.5 B mixing

BB and B°-B" mixing is activated by default in EvtGen by the main decay file DECAY.DEC.
It is however possible to desactivate it in the user decay file with the following keywords:

Desactivate BO-BObar mixing
nolncoherentBOMixing

Desactivate BOs-BOsbar mixing
noIncoherentBsMixing

It is also possible to change the mixing parameters used by the generator, Am and AT":

Set BO mixing parameters
yesIncoherentBOMixing <DeltaMd (in s~1)> <DeltaGammad (in s)>
Set BOs mixing parameters
yesIncoherentBsMixing <DeltaMs (in s~!)> <DeltaGammas (in s)>

Internally, the mixing is seen in EvtGen as a decay of a B® with a lifetime ¢ into a B’ with 0
lifetime. Then the second B' decays according to the decay table. The description of the mixing
is the same in the HepMC event containing the generator information. But at the end of Gauss,
this B hadron will be represented in MCParticle format as a B® MCParticle with mixing flag set
to true.

page 22

4.1.6 CP violation

When the program is asked to produce a mixture of b and b hadrons, the flavour of the b hadron
is chosen in the algorithm SignalDecayAlg in case of the forced fragmentation generation method
and is then transmitted to Pythia which will force the hadronization of the b (or b) quark into this
particular hadron.

For the other generation methods, the flavour is decided randomly in the algorithm PythiaAlg and
the event is rejected until the flavour decided in EvtGen matches the flavour generated by Pythia.

For non C'P decay modes, the probability of both flavours is 50 % but for CP decay modes, it may
be different from 50 %. The flavour of the b hadron to produce is in this case decided randomly
by EvtGen with the correct asymmetry.

By default, no CP violation is generated. The CP violation is activated choosing a decay model
which includes CP violation effects in the user decay file. The generic decay do not include CP
violation.

4.1.7 Standalone generation

It is possible to use Gauss with only the generation sequence, that is to say without simulating
the detector response with Geant4. For this, an option file is available in the Gauss package,
GenStandAlone.opts.

More details can be found at the address [15].

4.1.8 HepMC containers and conversion to Geant4 particles

The Gauss event generation sequence produces particles described in HepMC format and stored
in 3 different locations:

e "/Event/Gen/HepMCEvents": the full event generated by Pythia and EvtGen
e "/Event/Gen/SignalDecay": the b hadron decay tree, at rest, generated by EvtGen

e "/Event/Gen/BHadronTree": the b hadron decay tree in the laboratory frame, generated by
EvtGen

All HepMC particles have a status code property. This code is set to different values which have
the following meanings:

1 Stable particle generated by Pythia
2 Unstable particle generated and decayed by Pythia (or a fragmented parton)
3 Documentation particle generated by Pythia

777 An intermediate particle generated and decayed by EvtGen

888 Particle generated by Pythia or EvtGen and which must be decayed by EvtGen, that is to
say the root of a decay tree generated by EvtGen

889 The signal particle in the laboratory frame
998 Signal particle (a b or ¢ hadron) generated at rest by EvtGen

999 Stable particle generated by EvtGen

page 23

After the generation sequence, the generated particles are transformed into G4Particles to be
processed by the simulation sequence. Not all particles are transformed into G4Particles: for
examples partons are not converted. Also particles that are unknown to Geant4 (like B**) are also
ignored by the conversion but the information will always be present in the generation containers
which are available in output files.

A particle is converted if:

e the status is 1, 2, 888 or 889, and,
e the particle has no production vertex, or,

e the particle is a hadron, a lepton, a nucleus or a photon and has only one mother particle
which is not a hadron, neither a lepton, neither a nucleus nor a photon, or the status of the
mother particle is 3, or,

e the particle is a hadron, a lepton, a nucleus or a photon, and has several mother particles or
no mother particle but a production vertex (which is the case for particle guns).

When a particle is converted, all the decay chain is also converted, independently of the status
code or the type of the particle.

The conversion is implemented in the Sim/GiGaCnv package.

4.1.9 Debugging and testing tools

There are algorithms available to print informations about what is generated or to fill ntuples with
particles properties.

The algorithm DumpMC' of Gen/GeneratorModules prints on the screen the content of the Hep-
MCEvents generated. The location of the containers one wants to inspect have to be provided as
a list by job options (the default is indicated):

DumpMC.Addresses = "/Event/Gen/HepMCEvents" ;

The output level of the algorithm has to be set to MSG: : INFO.

DumpMCDecay prints on the screen the decay tree of selected particles in a given HepMCEvents
container. The selection is based either on the quark content of the particle or on the PDG number
of the particle. The container to inspect as well as the selection parameters can be set by job
options (the default values are indicated, the arguments can be a list of values):

DumpMCDecay .Addresses = "/Event/Gen/HepMCEvents" ;
DumpMCDecay .Particles 0 ;
DumpMCDecay .Quarks = H

o

The output level of the algorithm has to be set to MSG: : INFO.

A monitoring algorithm GeneratorFullMonitor is provided in the Sim/GaussMonitor package. It
fills a ntuple with variables of particles in a given HepMCEvents container. The particles stored in
the ntuple are the same than the particles converted into G4Particles. The location of the input
container can be modified by job options (illustrated here with the default value):

GeneratorFullMonitor.Input = "/Event/Gen/HepMCEvents" ;

The variables of the ntuple are:

e NPart the number of particles in the event,

page 24

e e(i), px(i), py(i), pz(i) the 4-vector of the particle ¢,

e vxProd(i), vyProd(i), vzProd(i), vtProd(i) the position of the production vertex of
the particle 1,

e vxDecay(i), vyDecay(i), vzDecay(i), vtDecay(i) the position of the decay vertex of
the particle 1,

e pdgld(i) the pdg code of the particle 4,
e nDau(i) the number of daughter particles of particle ¢,
e pdgIldMother(i) the pdg code of the mother particle of particle 4,
e pdgIdDaul(i) the pdg code of the first daughter particle of particle 4,
e pdgIdDau2(i) the pdg code of the second daughter particle of particle 4,
e pdgIdDau3(i) the pdg code of the third daughter particle of particle 4,
e pdgIdDau4(i) the pdg code of the fourth daughter particle of particle i,
e pdgldDau5(i) the pdg code of the fifth daughter particle of particle i,
e pdgIdDau6(i) the pdg code of the sixth daughter particle of particle 4,
e indexMother(i) the index of the mother particle of particle ¢ in the particle block,
¢ indexInter(i) the index of the interaction of particle ¢ in the interaction block,
e NInter number of pile-up interactions in the event,
e isBB(j) 1 if the interaction j contains a b quark (not yet implemented).
It is also possible to interact directly with Pythia to obtain useful informations for debugging. For

example, to dump to the file pythia.out the Pythia decay table and the content of the generated
event (by Pythia only), add the following lines to the option files:

PythiaAlg.UserPythiaCommand +=
{ "pyinit output pythia.out" ,
"pyinit pylisti 12" ,
"pyinit pylistf 3" } ;

4.1.10 External Libraries
4.1.10.1 Pythia

Version 6.224.2 from the GENSER library is used. This version uses HEPEVT common blocks with
a size of 10000 particles. Some routines or functions of Pythia are overriden to take into account
specific aspects of the generation of events in LHCb:

o pykfdi: to add modifications needed to perform the forced fragmentation in Gauss. The
settings for the forced fragmentation are transmitted through the variables MSTJ(30-34)
and MSTU(150-152) of the PYDAT1 common block which are otherwise unused in Pythia.
[Redefined in GeneratorModules]

e pyr: to use the Gaudi random number generator instead of the default Pythia one. [Rede-
fined in GeneratorModules]

e pyrand: to remove advisory warnings about maximum violation but which are not important.
[Redefined in GeneratorModules]

page 25

e Junhep: function which is used instead of pyhepc to convert Pythia events into the HEPEVT
format. This function also returns the number of b quarks in the event. [Defined in
GeneratorModules]

e lutran: to translate particle codes between PDG standard and Pythia standard which do
not agree for some particles. This is currently the case for particles with PDG codes 9000111
(a0(980)°), 9000211 (ae(980)*), 9010221 (£5(980)), 10221 (£5(1370)), 10111 (ae(1450)°) and
10211 (ao(1450)™). [Defined in GeneratorModules]

4.1.10.2 Photos
Version 2.07 from the GENSER library is used by the EvtGen package. This version uses HEPEVT

common blocks with a different size, then in order to work with the size used in Gauss (10000).
Some routines are redefined in Gauss:

e phocin: to redefine the common block PHOQED with a size of 10000. [Redefined in EvtGen]

e phoinf: to print correct information about HEPEVT common block size (10000). [Redefined
in EvtGen]

e photos_get and photos_set: to redifine the common blocks HEPEVT and PHOQED with a size of
10000. [Redefined in EvtGen)]

e phoran: to use the Gauss random number generator instead of the default one in Photos.
[Redefined in GeneratorModules]

4.2 GiGa - interface to Geant4

The interfacing of Geant4 to the Gaudi environment is done by GiGa [12]. It not only provides
the flow of data between Gaudi and Geant4 objects but also allows the control of the Geant4 event
loop through the standard Gaudi job options.

4.3 Detector simulation - general classes

In this section we will concentrate on the contents of the Sim/GaussTools packages since it is
there that most of the LHCb-specific classes are implemented.
4.3.1 Gausslnitialisation

GaussInitialisation is a small algorithm called at the begining of the simulation sequence which
plays two roles. It sets the random number seed for the event using the Hash32 algorithm (also
used by Boole and Brunel) as well as it generates the EventHeader.

4.3.2 TrCutsRunAction

TrCutsRunAction it is a run action which in its BeginOfRunAction method attaches user-defined
process to the selected particles. These process are:

page 26

4.3.2.1 MinEkineCut

MinEkineCut is basically the equivalent of the tracking cut in Geant3. It stops tracking the particle
which are below specified energy. This process is attached to all the particles except optical photons
and can be configure through the Simulation/simulation.xml file from Xm1DDDB.

4.3.2.2 WorldCut

WorldCut is a process with stops tracking the particle which go outside the ’world’. This process
is attached to all the particles. The limits can be changed through the job options.

4.3.2.3 LoopCuts

LoopCuts is a process which stops particles making too many small steps. This process is attached
to electrons.

4.3.3 GaussPreTrackAction

This is a mandatory tracking action which must be called before any other tracking actions. It
contains only the PreUserTrackingAction method and its role is to instanciate GaussTrajectory
objects.

4.3.4 GaussPostTrackAction

This tracking action must be called after any other tracking action. Its role is to decide whether
the given trajectory is to be kept or not. In case it was not kept, the consistency of the MC truth
is assured by setting the parent ID of the daughters to the ID of the last saved trajectory.

There is a number of criteria according to which the decision about storing (or not) the trajectory
can be based on. In particular, the primary (i.e. not having a mother trajectory) trajectories
should alwalys be stored (for consistency reason).

4.3.5 GaussStepAction

This stepping action is responsible for updating the GaussTrackInformation objects according to
what has happened during the particular step. It is needed in order to append steps of interest
(where hits where created, reflection of optical photons, etc).

4.4 Detector simulation - subdetector specific classes

4.4.1 GaussTracker

The GaussTracker package contains ’sensitive detector’ implementations as well as the appropriate
hit converters for all the tracker-like devices in LHCb. All the three subdetectors (for the trackers
(Inner and Outter), for the Velo and for the Muon) generate hits where the following information
is stored: the energy deposition, the entry and exit points, the time of flight and the ID of the track
that created the given hit (needed to set the appropriate links between hits and MCParticles).
In addition to that, the Velo sensitive detector provides the sensor number for the hit, while the
Muon sensitive detector provides the ChamberID and the GapID.

In addition to that, the sensitive detector implementations are responsible for updating
GaussTrackInformation whenever a new hit assigned to the given track has been created.

page 27

4.4.2 GaussCalo

The GaussCalo package contains the sensitive detector implementations for the LHCb calorimeter
system (PRS, SPD, ECAL and HCAL). All subdetectors produce hits containing the following
informations:

e the energy deposited by charged particles during a Geant4 step,
e the time when the energy was deposited,
e the cell ID where the energy was deposited,

e a link to the track which generated the hit.

A “forbidden” volume is defined for each sub-detector. When a hit is created, it is associated to
the Geant4 track which generated the hit except if the production vertex of this track is inside
this volume. In this case, the hit is associated to the first track in the parent history which
has a vertex outside this volume. This volume is defined by its minimum z co-ordinate and its
maximum 2z co-ordinate. By default z,,;,, = —1km and z,,,; = 1km, that is to say all hits inside
the calorimeters are associated to the track which generated it.

In order to save time and space, hits are only associated to tracks with vertices outside the
calorimeters’ volumes. This is achieved redefining in job options the z,,;, and z,,,, parameters:

GiGaGeo.Spd.zMin = 12300. * mm ; GiGaGeo.Spd.zMax 15000. * mm ;
GiGaGeo.Prs.zMin = 12300. * mm ; GiGaGeo.Prs.zMax = 15000. * mm ;
GiGaGeo.Ecal.zMin = 12300. * mm ; GiGaGeo.Ecal.zMax = 15000. * mm ;
GiGaGeo.Hcal.zMin = 12300. * mm ; GiGaGeo.Hcal.zMax = 15000. * mm ;

Each individual energy deposition in the sensitive material of the sub-detectors is corrected for
saturation effects according to the Birk’s law with parameters taken from [13]

1
Correction = (4.3)

2
1+ Cyd8e 4 C, (i)

where C; and C; are coefficients which can be altered via job options, dEdz is the energy deposition
in MeV/cm and p the density of the scintillator in g/cm®. The default values [13] are:

GiGaGeo.Ecal.BirkC1
GiGaGeo.Ecal.BirkC2

0.013 * g/MeV/cm2 ;
9.6E-6 * gxg/MeV/MeV/cm2/cm?2 ;

(and may also be altered the same way for PRS, SPD and HCAL).

Each individual energy deposition is also shared between consecutive 25 ns integration windows,
in order to simulate the behaviour of the signal integration by the electronic chain. The energy
is shared between 2 consecutive 25 ns time windows for the ECAL and the HCAL and between 6
consecutive windows for the PRS and the SPD.

The fractions of energy in each time bin are stored in input hbook histograms. The histograms
give the fraction of energy for each time window as a function of At, the time when the energy is
deposited with respect to the time when a photon coming from the origin arrives at the z position
of the maximum of the shower in the same cell the energy was deposited.

The location of the input timing histograms may be modified by job options:

HistogramDataSvc.Input +=
"GaussCalo DATAFILE=’$PARAMFILESRO0T/data/gausscalo.hbook’ TYP="HBOOK’ " ;

page 28

A specific ECAL correction is also applied to all individual energy depositions to simulate the
local non-uniformity of the detector response. The following correction is applied:

d d
Agiovar(—z0 + L/2)*(y —yo + L/2)*+

_ |[z—=g+L/2| ___ |lz—=g—L/2]|
Areflectz'onHez'ght(e AreflectionWidth | @ AreflectionWidth |

Correction = Asocal (1 — cos 2m—— w()) (1 — cos21Y = yo) +

ly—yo+L/2| ly—yo—L/2]|

e AreflectionWidth +e AreflectionWidth)

where (zo,y0) are the co-ordinates of the center of one cell, L is the size of one cell and d is
the distance between fibers. Alocala Aglobala AreflectionHeight and Areflectz'oan'dth are parameters
controlling the amplitudes and shapes of the correction. They depend on the area of the ECAL
and may be changed by job options. The default values are:

GiGaGeo.Ecal.a local_inner_ecal = 0. ;
GiGaGeo.Ecal.a local middle ecal = 0. ;
GiGaGeo.Ecal.a local outer_ecal = 0. ;
GiGaGeo.Ecal.a global_inner_ecal = 0.0004 ;
GiGaGeo.Ecal.a global middle_ecal = 0.002 ;
GiGaGeo.Ecal.a global outer_ecal = 0.03 ;
GiGaGeo.Ecal.areflection height = 0.09 ;
GiGaGeo.Ecal.areflection width = 6. * mm ;

0.
0.

4.4.3 GaussRICH

GaussRICH package contains the software which is specific to the simulation of the two RICH
detectors in LHCb. It uses GiGa package which interfaces GEANT4 with Gaudi framework.

The geometry of the RICH detectors is encoded XMLDDDB database. This is read by the DetDesk
package into the classes of the LHCD specific geometry framework. The GiGa converts them from
this framework into the GEANT4 geometry framework.

GaussRICH uses all the standard GEANT4 electromagnetic, hadronic and optical physics pro-
cesses as enlisted in the ’physics lists’ setup by the GaussPhysics package. Some of the optical
physics processes are modified in GaussRICH to suit the needs of the RICH simulation and these
are renamed to avoid confusion with their corresponding original GEANT4 versions. Couple of
RICH specific physics processes are created in GausRICH which are not available in GEANTA4.
The classes for these are derived from the appropriate GEANT4 base classes.

The silicon detector in each HPD is the sensitive detector which creates ’hits’. The information
related to each hit is stored in RICHG4Hit class which are later converted to MCRichHit and
MCRichOpticalPhoton and MCRichSegment classes for storage in the output file.

The following sections describe some of the details of these structures indicated above.

4.4.3.1 RICH1 XML geometry files

All the geometry parameters are defined in the files under the Richl/GeomParam subdirectory of
XMLDDDB. The materials are defined in RichMaterials.xml and RichMaterialTabProperty.xml.

The main components of the RICH1 geometry are:

e Magnetic Shielding,

e Aerogel , Filter,

page 29

Spherical and Flat Mirrors,

GasQuartz Window,

Array of HPDs,
o Exit Window.

e Richl Optical Surfaces

The Array of HPDs are inside a volume made of Nitrogen gas. The Aerogel and Mirrors are
inside a volume made of CyFig gas. All the components near the Beam Pipe have the Beam Pipe
subtracted out using boolean subtractions.

4.4.3.1.1 Magnetic Shielding The components of the Magnetic Shielding are:

e Box with boolean subtraction of another box, for region around HPDs (Rich1MgsOuter)
e Box for the part on Upstream side nearest to BeamPipe (Rich1MgsUpstr)

e Box for the part on Downstream side nearest to BeamPipe (Rich1MgsDunstr)

e Box for the part on the Left and Right sides (Rich1MgsSide)

e Box for the shelf part near downstream end (Rich1MgsMid) .

e Box for the part at the upstream in the corner (Rich1MgsUpstrCorner).

e Box for the part outside the TT chamber(Rich1MgsDnstrTT)

The part on the top half is labeled HO and the part on the bottom half is labeled H1. The shielding
is made of soft iron.

4.4.3.1.2 HPD The components of each HPD are:

e Spherical Quartz Input Window

Spherical PhotoCathode

Cylindrical Kovar Envelope

Kovar EndCap:

Silicon Detector

The Array of HPDs is inside a Photo Detector Support Frame. The arrangement of HPDs is
described in the corresponding XML files.

4.4.3.1.3 Aerogel In the Aerogel region there are:

e Four Aerogel tiles around the beam pipe.
e Opaque wrap around the lateral sides and upstream side of a tile.

e Filter downstream of Aerogel (optional)

4.4.3.1.4 Exit Window Region The Exit Window has a layer of G10 followed by a layer
of PMI material, which is followed by another layer of G10.

page 30

4.4.3.1.5 RICHI1 surfaces The Mirror surfaces are defined between the Cy Fi¢ and each of
the spherical and flat mirror segments. The HPD quartz window surface is between an HPD and
its quartz window. The PhotoCathode Surface is between the HPD Quartz Window and HPD
PhotoCathode. There is also a surface between an Hpd and its Kovar Envelope.

4.4.3.2 RICH2 XML geometry files

All the geometry parameters are defined in the files under the Rich2/GeomParam subdirectory.
The materials used are defined in RichMaterials.xml and RichMaterial TabProperty.xml. The main
components of the RICH2 geometry are:

e Magnetic Shielding,

Spherical and Flat Mirrors,

GasQuartz Window,

Array of HPDs,
e Entrance and Exit Window.

e Rich2 Optical Surfaces

The magnetic shielding is made of various boxes and trapezoids. The spherical mirror consists of
several mirror segments with hexagonal edges. The flat mirror also consists of several segments
which are rectangular boxes. The arrangement of the HPDs in the arrays is documented in the
corresponding xml files directly. The entrance window has a layer of Carbonfibre, a layer of
PMI (Rohacell51IG) material and another layer Carbon fibre. The exit window has a layer of
Aluminum, a layer of PMI (Rohacell51IG) material and another layer of Aluminum. There is an
optical surface between the Rich2Mastervolume and each of the spherical and flat mirror segments.

4.4.3.3 Physics Processes

The description of the standard GEANT4 electromagnetic and hadronic processes can be found
in the GEANT4 documentation. The ones which are modified for GaussRICH are as follows:

e RichG4Cerenkov Process: For optimizing the CPU time, two different refractive index tables
are created in XML. The first is the 'RINDEX’ table which has the full wavelength range.
The second is the '"CKVRNDX’ table which has a limited refractive index range. The latter
table is used in RichG4Cerenkov Process for obtaining the refractive index of the medium
for Cherenkov photon production. The RINDEX table is used by other optical processes for
the optical photons which are created either in the same medium or in a different medium.

For RICH specific studies, the following information at the time of photon creation are stored
in the ’user track information’ of the photon. These information are eventually transferred
to the corresponding hits for output files. The list of information are:

PDG code of the charged track

Photon energy at the time of its production
Cherenkov Angle Theta and Phi

e PDG Mass of the charged track

Three Momentum of the charged track

Pre step and Post step point locations of the charged track

page 31

e RichG4OpRayleigh Process : To save CPU time and to avoid infinite looping of photons
inside an aerogel tile, a maximum number of allowed steps (default 5000) for an optical
photon is implemented. An photon with more steps than the maximum, is killed. This limit
can be set through the Rich options file.

The number of times an optical photon is Rayleigh scattered is stored in the ’usertrack action
’ of the optical photon and copied eventually along with the output hit information.

In the XML files, the Rayleigh scattering lengths for the various wavelengths is calculated
from the 'Clarity’ parameter and stored in the '/RAYLEIGH’ table.

The constant amount of absorption at large wavelength is converted into an ’absorption
length’ table in XML files and hence that table is used directly by the G4OpAbsorption
process.

e G40pBoundaryProcess: The quantum efficiency of the HPDs includes the loss of photons at
the HPD quartz window. Hence the transmission at the HPD quartzwindow and photocath-
ode are set to be 1.0 to avoid double counting the losses. The HPDMaster uses vacuum as the
medium. When a photon goes from the surrounding nitrogen to this vacuum of HPDMaster
the transmission is set to 1.0 to avoid unnecessary loss of photons.

To avoid infinite looping of optical photons due to total internal reflection, the photons
undergoing total internal reflection are absorbed in Aerogel, filter and the Gas window of
both RICH detectors. This situation can happen when the critical angle on the surface of
the rectangular box is smaller than the Cherenkov angle of the photons created in the same
box.

The RICH specific physics processes are :

e RichHpdPhotoElectricEffect: The standard G4Photoelectric effect requires one to know the
exact material composition of the photocathode to derive the Quantum Efficiency (QE).
The RichHpdPhotoElectricEffect uses the QE values from the manufacturer as encoded in
the XML table to determine the probability for photoelectron creation. The photoelectrons
are created with a direction set by the cross focusing formula and the Point Spread Func-
tion (PSF). The particle produced in this process is called ’RichPhotoElectron’ which has
all the properties of an electron, but has only the transportation and RichHpdSiEnergy-
Loss processes associated with it. This is to avoid the unnecessary loss of photoelectrons
inside an HPD. The various parameters of the HPD are read from XML database into the
RichHpdProperties class for using in this process.

e RichHpdSiEnergyLoss: The RichHpdSiEnergyLoss process lets the photoelectrons deposit
all their energy inside the silicon. The high energy charged particles that traverse the Silicon
deposit the MIP energy in the silicon and continue their transport. Any photoelectron which
hit the kovar envelop is killed. The energy stored by this process is eventually copied as the
energy of ’hit’ in Silicon detector.

4.4.3.4 RICH Hits

The charged particles create the optical photons and photons create the photoelectrons. The
photoelectrons which are incident on the HPD silicon detector create the hits. The hits are stored
in RichG4Hit class. This class contains location and energy of the hits.

The ’usertrack information’ of the photons are converted to the ’usertrack information’ of the
photoelectrons which in turn are copied to the RichG4Hit class. The full list of information in
RichG4Hit class can be found class definition (RichG4Hit.hh). There are four GEANT4 Hit
Collection lists. They are, for hits from :

e Top Half of RICH1,
e Bottom Half of RICH1,

page 32

o Left Half of RICH2,
e Right half of RICH2.

Some of the information from RichG4Hit class are converted into MCRichHit for standard pro-
duction runs. The rest of the information are converted into MCRichOpticalPhoton, MCRich-
Segment classes during special production runs where ’extended’ information output is activated.
The MCRichHit, MCRichOpticalPhoton and MCRichSegment segment classes are written to the
output files according to the options activated.

4.4.3.5 Optimization and Adaptation for Special Studies

In order to optimize the CPU time, the number of photons that are tracked are minimized. For
this:

e In RichG4TrackActionPhotOpt, the QE and the maximum reflectivity of the mirrors are
taken from the XML to determine the fraction of optical photons to be killed at the PreUser-
Tracking action level of each photon.

e In Rich1G4TrackActionUpstrPhoton, the optical photons which originate upstream of the
aerogel are killed at the PreUserTracking action level.

e For the production runs, the aerogel refractive index range in XML for photon production
is set to be below the wavelength cut off for the filter.

e The RichG40ptBoundary process has some modifications as mentioned in the previous sec-
tion on Physics Processes.

For special studies additional (’extended’) information is provided in RichG4Hit. The
list of additional information is available in RichG4HitClass. Some of these are done in
RichG4Cerenkov process and RichG4OpRayleigh Process as indicated in the previous sec-
tion on Physics Processes. The other information are acquired using ’UserStepActions’
in RichG4StepAnalysis3 and RichG4StepAnalysis5. The actual implementations are in
the functions in RichG4CherenkovPhotProdTag,RichG4RayleighTag, RichG4AgelExitTag and
RichG4MirrorReflPointTag files. The information tagged by RichG4CherenkovPhotProdTag is
mentioned above. The RichG4RayleighTag tags the number of times a photon undergoes Rayleigh
scattering. The RichG4AgelExitTag tags the location of the photon at the exit plane of Aerogel.
The RichG4MirrorReflPointTag tags the reflection points on the spherical and flat mirrors. In
addition to these, the location where the photoelectron is originated is tagged in RichHpdPhoto-
electricEffect process.

4.4.3.6 Options files

The Rich.opts file activates options specific to GaussRICH. This file has the information needed
to activate the various options. From this file one can activate the RichVerbose.opts and Rich-
Analysis.opts files. If the RichVerbose.opts is activated, the ’extended’ information is created and
written out to the RichG4Hit class. If the RichAnalysis.opts is activated, some of the built in
analysis to count the photoelectronyield and resolutions are activated.

For standard production runs, the Rich.opts is used without the RichVerbose.opts and RichAnal-
ysis.opts.

page 33

command | entry Pythia equivalent
pbar To produce proton anti-proton collisions
win Not used
- pylisti CALL PYLIST(argl) just after PYINIT
pPyinit n
pylistf CALL PYLIST(argl) after all PYEXEC or PYEVNT call
output | Redirect all Pythia output to file argl instead of screen
msel MSEL = argl
subs msub MSUB(argl) = arg2
Py ckin CKIN(argl) = arg2
kfin KFIN(argl,arg2) = arg3
mstp MSTP (argl) = arg2
msti MSTI(argl) = arg2
pypars parp PARP(argl) = arg2
pari PARI(argl) = arg2
mstu MSTU(argl) = arg2
mstj MSTJ(argl) = arg2
pydatl paru PARU(argl) = arg2
parj PARJ(argl) = arg2
kchg KCHG(argl,arg2) = arg3
pmas PMAS(argl,arg2) = arg3
pydat2 parf PARF(argl) = arg2
vckm VCKM(argl,arg2) = arg3
mdcy MDCY (PYCOMP (argl) ,arg2) = arg3
mdme MDME(argl,arg2) = arg3
pydat3 brat BRAT(argl) = arg2
kfdp KFDP(argl,arg2) = arg3
mrpy MRPY(argl) = arg2
pydatr rrpy RRPY(argl) = arg2
nssm imss IMSS(argl) = arg2
Py rmss RMSS(argl) = arg2
iset ISET(argl) = arg?2
. kfpr KFPR(argl,arg2) = arg3
pyint2 coef COEF(argl,arg2) = arg3
icol ICOL(argl,arg2,arg3) = arg4d

Table 4.1: Pythia commands

page 34

PDG Id | Particle | EvtGen alias |

511 B BOsig

-511 B’ anti-BOsig
521 Bt B+sig

-521 B~ B-sig

531 B? B_sOsig

-531 E(s) anti-B_sOsig
541 B} B_c+sig

-541 B, B_s-sig

5122 Ay Lambda bOsig
-5122 Ay anti-Lambda bOsig
551 b eta bsig
10553 hy h bsig

5112 X, Sigma b-sig
-5112 f,j anti-Sigma b+sig
443 J/ J/psisig

421 DO DOsig

421 D’ anti-DOsig
411 D+ D+sig

-411 D~ D-sig

431 Df D_s+sig

-431 D, D_s-sig

4122 AF Lambda_c+sig
-4122 A, anti-Lambda c-sig

Table 4.2: Predefined EvtGen aliases for signal user decay file

page 35

Bibliography

1] http://geant4.web.cern.ch/geant4

2] http://cern.ch/lhcb-comp/Digitization/

3] http://cern.ch/lhcb-comp/Support/CMT /cmt.htm
4] http://cern.ch/lhcb-comp/

[

[

[

[

[5] http://proj-gaudi.web.cern.ch/proj-gaudi/

[6] http://cern.ch/lhcb-comp/Frameworks/EventModel/

[7] http://cern.ch/lhcb-comp/Frameworks/DetDesc/default.htm

[8] http://cern.ch/lhcb-comp/Simulation

[9] http://lhcb-release-area.web.cern.ch/LHCb-release-area/GAUSS/doc/html/index.html
10] http://www.thep.lu.se/tf2/staff/torbjorn/Pythia.html

11] http://www.slac.stanford.edu/ lange/EvtGen/

13] R. L. Graun and D. L. Smith, Nucl. Intrum. Meth. 80, 239 (1970)

[
[
[12]
[
[14] http://lhcb-comp.web.cern.ch/lhcb-comp/event_types_v2.0.pdf
[

15] http://lhcb-comp.web.cern.ch/lhcb-comp/Simulation/evtgen.htm

page 36

